théorème. Soit (X, d) un espace métrique compact et $(x_n)_{n \in \mathbb{N}}$ une suite de X telle que $\lim_{n \to \infty} d(x_n, x_{n+1}) = 0$. Alors l'ensemble des valeurs d'adhérence de (x_n) est un connexe de X

Démonstration. On note Γ l'ensemble de valeurs d'adhérence de (x_n) . c'est un compact de X car fermé. Supposons Γ pas connexe. Alor il existe A et B deux fermés non-vides disjoints tels que $\Gamma = A \sqcup B$. Comme A et B sont fermés dans un compact, elles sont compactes. On en déduit d(A,B) > 0, on pose $\alpha = d(A,B)$. on définit $A' := \{x \in X \mid d(x,A) < \frac{\alpha}{3}\}$, $B' := \{x \in X \mid d(x,B) < \frac{\alpha}{3}\}$ et $K = X \setminus A' \cup B'$. Comme A' et B' sont ouverts dans Γ , donc K est fermé dans un compact donc compact.

Par définition de la suite (x_n) il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, $d(x_{n+1}, x_n) < \frac{\alpha}{3}$. Comme les parties A et B sont non vides il exite $a \in A$ et $b \in B$ qui sont des valeur d'adhérence de (X_n) donc il existe $n_0 > N$ tel que $d(a, x_{n_0}) < \frac{\alpha}{3}$ et $x_{n_0} \in A'$. de même il existe $n_2 > n_0$ tel que $d(b, x_{n_2}) < \frac{\alpha}{3}$ et $x_{n_2} \in B'$

 $x_{n_2} \notin A'$ car sinon on aurait qu'il xiste $a' \in A$ tel que $d(x_{n_2}, a') < \frac{\alpha}{3}$ et par inégalité triangulaire $d(a', b) \leq d(a', x_{n_2}) + d(x_{n_2}, b) < \frac{2\alpha}{3}$ ce qui est impossible par définition de α . Il existe donc $n_2 > n_1 > n_0$ tel que $x_{n_1} \notin A'$ et $x_{n_1-1} \in A'$. $x_{n_1} \notin B'$ en effet sinon on aurait qu'il existe $b' \in B$, $a' \in A$ tel que $d(a', x_{n_1-1}) < \frac{\alpha}{3}$ et $d(b', x_{n_1}) < \frac{\alpha}{3}$ et par inégalité triangulaire $d(a', b) \leq d(a', x_{n_1-1}) + d(x_{n_1-1}, x_{n_1}) + d(x_{n_1}, b') < \alpha$ ce qui est impossible par définition de α . Ainsi $x_{n_1} \notin B'$ donc $x_{n_1} \in K$. On construit ainsi par récurrence une sous suite de (x_n) contenue dans K qui est compact et donc qui admet une valeur d'adhérence, ce qui contredit la définition de K. Γ est forcément connexe.

théorème. Soit $f:[0,1] \to [0,1]$ continue et $(x_n)_{n \in \mathbb{N}}$ une suite definie par $x_0 \in [0,1]$, $x_{n+1} = f(x_n)$ vérifiant $\lim_{n \to \infty} x_{n+1} - x_n = 0$, alors x_n converge.

Démonstration. On note Γ l'ensemble des valeurs d'adhérence de (x_n) . Par le théorème précédent, Γ est connexe, c'est donc un intervalle fermé. Voyons $\Gamma \subset Fix(f) = \{a \in [0,1] | f(a) = a$. Soit $a \in \Gamma$. Il existe une sous-suite $(x_{n_k})_{k \in \mathbb{N}}$ qui converge vers a. Or $\lim_{k \to \infty} f(x_{n_k}) - x_{n_k} = \lim_{k \to \infty} x_{n_k+1} - x_{n_k} = 0$ et par continuité de f, $\lim_{k \to \infty} f(x_{n_k}) = f(a)$ donc f(a) = a

Si Γ est reduit à un point, alors (x_n) est bornée et n'admet qu'une valeur d'adhérence donc converge. Si Γ n'est pas réduit à un point alors il existe $c \in \Gamma$, h > 0 tels que $[c - h, c + h] \subset \Gamma$. On a qu'il existe $N \in \mathbb{N}$ tel que $|x_N - c| < \frac{h}{2}$ donc $x_N \in \Gamma$. Ainsi pour tout n > N, $x_n = f(x_{n-1}) = x_N$ et la suite est stationnaire. et Γ est donc en fait réduit à un point. (x_n) converge.