241 : Suites et séries de fonctions.

Exemples et contre-exemples.

Cadre : (E, ||.||) un e.v.n., $X \subset E$ non vide, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , $\mathcal{B}(X, E)$ l'ensemble des applications bornées.

I) Différents modes de convergence

- A) Convergence simple Définitions d'une série de fonctions et de la convergence simple d'une suite de fonctions. Reste d'ordre n, exemple.
- B) Convergence uniforme
 Définition, Uniforme ⇒ Simple, réciproque fausse, exemple.
 Convergence uniforme d'une série, critère de CAUCHY uniforme dans un BANACH.
- C) Convergence normale
 Définition, Normale ⇒ Uniforme, exemple.

II) Stabilité par passage à la limite

A) Continuité

Limite uniforme d'une suite d'applications continues, exemple et contre-exemple. Convergence locale uniforme, exemple de zêta.

B) Dérivabilité

Théorème de convergence d'une suite dérivée. Hypothèse nécessaire, exemple et contre-exemple.

III) Série entière

Définition, lemme d'ABEL, rayon de convergence, règles classiques, continuité et dérivabilité. **DEV** 1 : TAUBÉRIEN FORT. Application. Nombre de BELL.

IV) Séries de fourier

Coefficients et série de FOURIER, théorème principaux (PARSEVAL, DIRICHLET), application au calcul de sommes.

V) Espaces de LEBESGUE

Théorèmes de BEPPO LEVI, de FATOU et de convergence dominée. Exemples illustrant la nécessité de chaque hypothèse. Espace de LEBESGUE L^P . **DEV** 2 : THÉORÈME DE RIESZ-FISHER. Suite extraite convergeant p.p.. Densité des fonctions étagées et de $\mathcal{D}(\mathbb{R})$ dans $L^p(\mathbb{R})$.

Références:

- AMRANI
- GOURDON
- GARET-KURTZMANN