Leçon 158 : Matrices symétriques réelles, matrices hermitiennes.

Soit $K = \mathbb{R}$ ou \mathbb{C} et E un K-espace vectoriel.

1 Matrices symétriques et hermitiennes

1.1 Définitions et premières propriétés

Définition 1 Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est dite symétrique (resp. antisymétrique) si ${}^tA = A$ (resp. ${}^tA = -A$). On note $\mathcal{S}_n(\mathbb{R})$ (resp. $\mathcal{A}_n(\mathbb{R})$) l'ensemble des matrices symétriques (resp. antisymétriques) réelles.

Définition 2 Une matrice $A \in \mathcal{M}_n(\mathbb{C})$ est dite hermitienne si ${}^t\overline{A} = A$. On note $\mathcal{H}_n(\mathbb{C})$ l'ensemble des matrices hermitiennes.

Exemple 3 La matrice $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ est symétrique. La matrice $\begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$ est hermitienne.

Proposition 4 On a $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$ et $\mathcal{H}_n(\mathbb{C}) = \mathcal{S}_n(\mathbb{R}) \oplus i\mathcal{A}_n(\mathbb{R})$.

Proposition 5 On a dim $(S_n(\mathbb{R})) = \frac{n(n+1)}{2}$ et dim $(A_n(\mathbb{R})) = \frac{n(n-1)}{2}$. On a dim $(H_n(\mathbb{C})) = n^2$.

Remarque 6 $\mathcal{H}_n(\mathbb{C})$ est un \mathbb{R} -espace vectoriel mais pas un \mathbb{C} -espace vectoriel.

Proposition 7 Les valeurs propres d'une matrice symétrique ou hermitienne sont réelles.

Définition 8 On dit qu'une matrice $A \in \mathcal{S}_n(\mathbb{R})$ est positive (resp. définie positive) si : $\forall X \in \mathbb{R}^n$, ${}^tXAX \ge 0$ (resp. $\forall X \in \mathbb{R}^n \setminus \{0\}$, ${}^tXAX > 0$). On note $\mathcal{S}_n^+(\mathbb{R})$ (resp. $\mathcal{S}_n^{++}(\mathbb{R})$) l'ensemble de matrices symétriques positives (resp. définies positives).

Définition 9 On dit qu'une matrice $A \in \mathcal{H}_n(\mathbb{C})$ est positive (resp. définie positive) si : $\forall X \in \mathbb{C}^n$, ${}^t\overline{X}AX \ge 0$ (resp. $\forall X \in \mathbb{C}^n \setminus \{0\}$, ${}^t\overline{X}AX > 0$). On note $\mathcal{H}_n^+(\mathbb{C})$ (resp. $\mathcal{H}_n^{++}(\mathbb{C})$) l'ensemble de matrices hermitiennes positives (resp. définies positives).

1.2 Lien avec les formes bilinéaires symétriques et hermitiennes

Définition 10 Une forme bilinéaire sur E est une application $\varphi: E^2 \to K$ telle que pour tout $x, y \in E$, $\varphi(x, .)$ et $\varphi(., y)$ sont linéaires. Elle est dite symétrique si pour tout $(x, y) \in E^2$, $\varphi(x, y) = \varphi(y, x)$.

Définition 11 Si $K = \mathbb{C}$, une forme sesquilinéaire sur E est une application $\varphi : E^2 \to \mathbb{C}$ telle que pour tout $x, y \in E$, $\varphi(x, .)$ est linéaire et $\varphi(\underline{.}, y)$ est antilinéaire. Elle est dite symétrique si pour tout $(x, y) \in E^2$, $\varphi(x, y) = \varphi(y, x)$.

Remarque 12 En considérant E comme un \mathbb{R} -espace vectoriel, une forme sesquilinéaire est une forme bilinéaire.

Exemple 13 Si on considère le \mathbb{C} -espace vectoriel $E = \mathcal{C}([0,1],\mathbb{C}),$ l'application $\varphi: E^2 \to \mathbb{C}$ définie par $\varphi(f,g) = \int_0^1 \overline{f(t)} g(t) dt$ est une forme sesquilinéaire sur E^2 .

Définition 14 On suppose E de dimension finie et on fixe $e = (e_1, ..., e_n)$ une base de E. Si φ est une forme bilinéaire (resp. sesquilinéaire) sur E, la matrice de φ est la matrice $Mat_e\varphi = (\varphi(e_i, e_j))_{1 \le i,j \le n}$. Dans ce cas, pour tout $(x, y) \in E^2$, $\varphi(x, y) = {}^tXMY$ (resp. $\varphi(x, y) = {}^t\overline{X}MY$).

Proposition 15 Deux matrices M, M' représentant la même forme bilinéaire (resp. sesquilinéaire) sont congruentes, i.e il existe P inversible telle que $M = PM'^{t}P$.

Proposition 16 Si φ est une forme bilinéaire (resp. sesquilinéaire), φ est symétrique si et seulement si sa matrice est symétrique (resp. hermitienne).

Définition 17 Une forme quadratique sur E est une application q de la forme $q: E \to \mathbb{R}, x \mapsto \varphi(x, x)$ où φ est une forme bilinéaire symétrique.

Définition 18 Si $K = \mathbb{C}$, une forme hermitienne est une application q de la forme $q: E \to \mathbb{R}$, $x \mapsto \varphi(x, x)$ où φ est une forme sesquilinéaire symétrique sur E.

Proposition 19 Si q est une forme quadratique (resp. hermitienne), il existe une unique forme bilinéaire symétrique (resp. sesquilinéaire symétrique) φ telle que pour tout $x \in E$, $q(x) = \varphi(x, x)$. φ est appelée la forme polaire de q.

Définition 20 La matrice dans une certaine base e d'une forme quadratique ou hermitienne q est la matrice de sa forme polaire. On la note encore $\text{Mat}_e q$.

2 Réduction et applications

2.1 Théorème spectral

Définition 21 Une matrice $P \in \mathcal{M}_n(\mathbb{C})$ est dite unitaire si ${}^t\overline{P}P = I_n$. On note $U_n(\mathbb{C})$ l'ensemble des matrices unitaires.

Théorème 22 (spectral) Soit $M \in \mathcal{S}_n(\mathbb{R})$ (resp. $\mathcal{H}_n(\mathbb{C})$). Alors il existe une matrice $P \in O_n(\mathbb{R})$ (resp. $P \in U_n(\mathbb{C})$) telle que $M = PDP^{-1}$, où D est une matrice diagonale réelle.

Remarque 23 Une matrice symétrique complexe n'est pas forcément diagonalisable : considérer $\begin{pmatrix} 0 & 1 \\ 1 & 2i \end{pmatrix}$.

Corollaire 24 Si $A \in \mathcal{S}_n(\mathbb{R}), A \in \mathcal{S}_n^+(\mathbb{R})$ (resp. $\mathcal{S}_n^{++}(\mathbb{R})$) si et seulement si $\operatorname{Sp}(A) \subset \mathbb{R}_+$ (resp. $\operatorname{Sp}(A) \subset \mathbb{R}_+^*$).

Corollaire 25 Si $A \in \mathcal{H}_n(\mathbb{C})$, $A \in \mathcal{H}_n^+(\mathbb{C})$ (resp. $\mathcal{H}_n^{++}(\mathbb{C})$) si et seulement si $\operatorname{Sp}(A) \subset \mathbb{R}_+$ (resp. $\operatorname{Sp}(A) \subset \mathbb{R}_+^*$).

Remarque 26 On peut généraliser ce résultat à $\mathcal{S}_n^+(\mathbb{R})$ et $\mathcal{H}_n^+(\mathbb{C})$.

Corollaire 27 Si E est euclidien (resp. hermitien) et q est une forme quadratique (resp. hermitienne) sur E, alors il existe une base orthonorméee de E dans laquelle la matrice de q est diagonale réelle.

2.2 Réduction des formes quadratiques

Définition 28 Soient q, q' deux formes quadratiques ou hermitiennes. On dit que q et q' sont équivalentes s'il existe deux bases e et e' de K^n telles que $\operatorname{Mat}_e q = \operatorname{Mat}_{e'} q'$.

Théorème 29 Soit q une forme quadratique ou hermitienne. Alors il existe une base de E dans laquelle la matrice de q est diagonale réelle.

Théorème 30 (Sylvester) Soit q une forme quadratique ou hermitienne. Alors il existe une base de $e=(e_1,...,e_n)$ de E telle que pour tout $x=\sum x_ie_i\in E, \ q(x)=|x_1|^2+...+|x_p|^2-|x_{p+1}|^2-...-|x_{p+r}|^2$ avec $p+r\leqslant n$, i.e $Mat_eq=\operatorname{diag}(I_p,-I_r,0)$. Le couple (p,r) est unique et est appelé la signature de q.

Exemple 31 On utilise la méthode de Gauss pour déterminer la signature d'une forme quadratique, par exemple $q(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 15x_3^2 - 4x_1x_2 + 6x_1x_3 - 8x_2x_3$ a pour signature (2,1).

Corollaire 32 Deux formes quadratiques ou hermitiennes sont équivalentes si et seulement si elles ont même signature.

Corollaire 33 En considérant l'action par congruence de $GL_n(\mathbb{R})$ sur $S_n(\mathbb{R})$, deux matrices symétriques réelles sont congruentes si et seulement si elles ont même signature.

Proposition 34 Une forme quadratique ou hermitienne q est positive (i.e pour tout $x \in E$, $q(x) \ge 0$) si et seulement si sa signature est de la forme (p,0) avec $p \le n$.

2.3 Décompositions polaires

Proposition 35 Pour tout $A \in \mathcal{S}_n^{++}(\mathbb{R})$, il existe une unique matrice $B \in \mathcal{S}_n^{++}(\mathbb{R})$ telle que $B^2 = A$. B est appelée racine carrée de A.

Théorème 36 L'application $\phi: O_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R}) \to GL_n(\mathbb{R})$ définie par $\phi(O,S) = OS$ est un homéomorphisme.

Remarque 37 On peut généraliser la proposition 33 à $\mathcal{S}_n^+(\mathbb{R})$ et $\mathcal{H}_n^+(\mathbb{C})$.

Théorème 38 L'application $\phi: U_n(\mathbb{C}) \times \mathcal{H}_n^{++}(\mathbb{C}) \to GL_n(\mathbb{C})$ définie par $\phi(O,S) = OS$ est un homéomorphisme.

Application 39 $O_n(\mathbb{R})$ est un sous-groupe compact maximal de $GL_n(\mathbb{R})$.

Définition 40 On note O(p,q) le groupe orthogonal de la forme quadratique sur \mathbb{R}^n représentée dans la base canonique par la matrice $\operatorname{diag}(I_p, -I_q)$, avec p+q=n.

Proposition 41 exp : $S_n(\mathbb{R}) \to S_n^{++}(\mathbb{R})$ est un homéomorphisme.

Théorème 42 On a un homéomorphisme entre O(p,q) et $O(p) \times O(q) \times \mathbb{R}^{pq}$.

3 Applications

3.1 Calcul différentiel

Définition 43 Soit U un ouvert de \mathbb{R}^n et $f:U\to\mathbb{R}$ une fonction deuxfois différentiable en un point $a\in U$. On identifie sa différentielle seconde $D^2f(a)\in\mathcal{L}(\mathbb{R}^n,\mathcal{L}(\mathbb{R}^n,\mathbb{R}))$ à une forme bilinéaire sur \mathbb{R}^n , et on définit la ma-

trice hessienne de
$$f$$
 en $a \in U$ par $D^2 f(a) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(a)\right)_{1 \leq i,j \leq n}$.

Proposition 44 La matrice $D^2f(a)$ est symétrique, on note alors Q(a) la forme quadratique associée.

Proposition 45 Soit a un point critique de f.

- 1. Si f admet un minimum relatif en a, alors Q(a) est une forme quadratique positive.
- 2. Si Q(a) est une forme quadratique définie positive, alors f admet un minimum relatif en a.

Remarque 46 1. On a des énoncés analogues pour les maximums relatifs.

2. Le point 2. n'est pas vrai si Q(a) est seulement positive : considérer $f(x) = x^3$ en a = 0.

Théorème 47 (lemme de Morse) Soit $f: U \to \mathbb{R}$ une fonction de classe C^3 sur un ouvert U de \mathbb{R}^n contenant l'origine. On suppose que 0 est un point critique de f tel que Q(0) est une forme quadratique non dégénérée de signature (p, n-p). Alors il existe un C^1 -difféomorphisme φ entre deux voisinages V et W de l'origine tel que $\varphi(0) = 0$, et pour tout $x \in V$,

$$f(x) = f(0) + \varphi_1(x)^2 + \dots + \varphi_p(x)^2 - \varphi_{p+1}(x)^2 - \dots - \varphi_n(x)^2.$$

Remarque 48 A un changement de coordonnées près, au voisinage d'un point critique non dégénéré, on peut rendre la formule de Taylor à l'ordre 2 exacte.

3.2 Résolution de systèmes linéaires

On cherche à résoudre Ax = b d'inconnue $x \in \mathbb{R}^n$ avec $A \in \mathcal{S}_n^{++}(\mathbb{R})$ et $b \in \mathbb{R}^n$.

Théorème 49 (Cholesky) Si $A \in \mathcal{S}_n^{++}(\mathbb{R})$, alors il existe une unique matrice B triangulaire inférieure à diagonale strictement positive telle que $A = B^t B$.

Application 50 Pour résoudre Ax = b, on résoud en deux temps Bu = b, puis ${}^tBx = u$, systèmes plus faciles à résoudre puisque B et tB sont triangulaires.

Théorème 51 L'application $\phi: x \mapsto \frac{1}{2}\langle Ax, x \rangle - \langle b, x \rangle$ est de classe \mathcal{C}^1 sur \mathbb{R}^n et admet un unique minimum, atteint en $\overline{x} = A^{-1}b$.

Définition 52 On note $\|.\|$ la norme euclidienne sur \mathbb{R}^n et $\|.\|_A$ la norme induite par le produit scalaire $(x, y) = \langle x, Ay \rangle$.

Lemme 53 (Kantorovitch) On note λ_{\min} (resp. λ_{\max}) la plus petite (resp. grande) valeur propre de A. Alors, pour tout $x \in \mathbb{R}^n \setminus \{0\}$,

$$\frac{\|x\|^4}{\|x\|_{A^{-1}}^2 \|x\|_A^2} \geqslant 4 \frac{\lambda_{\min} \lambda_{\max}}{(\lambda_{\min} + \lambda_{\max})^2}.$$

Théorème 54 (méthode du gradient à pas optimal) Soit $a \in \mathbb{R}^n \setminus \{\overline{x}\}$ et $(x_k)_k$ la suite définie par $x_0 = a$ et, pour tout $k \in \mathbb{N}$, $x_{k+1} = x_k - \alpha_k \nabla \phi(x_k)$, où $\alpha_k = \frac{\|\nabla \phi(x_k)\|^2}{\|\nabla \phi(x_k)\|^2}$. Alors $(x_k)_k$ converge vers \overline{x} et

$$||x_{k+1} - \overline{x}|| \le \frac{\lambda_{\max}}{\lambda_{\min}} \left(\frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}}\right)^{k+1} ||x_0 - \overline{x}||.$$

3.3 Vecteurs gaussiens

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et $d \ge 1$.

Définition 55 Un vecteur gaussien est un vecteur aléatoire X de \mathbb{R}^d tel que, pour tout $a \in \mathbb{R}^d$, la variable aléatoire réelle $\langle X, a \rangle$ suit une loi normale. On note $m = (\mathbb{E}[X_1], ..., \mathbb{E}[X_d])$ et $\Gamma = (\text{Cov}(X_i, X_j))_{1 \le i,j \le d}$.

Proposition 56 Un vecteur gaussien est entièrement caractérisé par son espérance m et sa matrice de covariance Γ : on note $X \sim \mathcal{N}_d(m, \Gamma)$.

Exemple 57 Si $X_1, ..., X_d$ sont des variables aléatoires réelles gaussiennes indépendantes, alors $(X_1, ..., X_d)$ est un vecteur gaussien.

Proposition 58 Si $X \sim \mathcal{N}_d(m, \Gamma), \Gamma \in \mathcal{S}_n^+(\mathbb{R}).$

Proposition 59 Si $X \sim \mathcal{N}_d(m, \Gamma)$, $A \in \mathcal{M}_d(\mathbb{R})$ et $b \in \mathbb{R}^d$, alors $AX + b \sim \mathcal{N}_d(Am + b, A\Gamma^t A)$.

Corollaire 60 Soient $m \in \mathbb{R}^d$ et $\Gamma \in \mathcal{S}_n^+(\mathbb{R})$. On note A la racine carrée de Γ . Si $X \in \mathcal{N}_d(0, I_d)$, alors $AX + m \sim \mathcal{N}_d(m, \Gamma)$. Ainsi, toute matrice symétrique positive est la matrice de covariance d'un vecteur gaussien.

Références :

- Algèbre, Gourdon.
- Petit guide du calcul différentiel, Rouvière.
- Algèbre linéaire numérique, Allaire.
- De l'intégration aux probabilités, Garet-Kurtzmann.
- Développements seulement : Mathématiques pour l'agrégation (Rombaldi), NH2G2 tome 1 (Caldero).