Densité des fonctions continues nulle part dérivables

• Queffélec, Zuily, Analyse pour l'agrégation. (271-272)

On note A l'ensemble des fonctions continues sur [0,1] qui ne sont dérivables en aucun point de [0,1].

Alors A contient une intersection dénombrable d'ouverts dense de $C^0([0,1])$. Et A est dense dans $C^0([0,1])$.

Démonstration.

Comme $(\mathcal{C}^0([0,1]), \|\cdot\|_{\infty})$ est complet, alors par le théorème de Baire, il suffit de montrer que A^c est contenu dans une réunion dénombrable de fermés d'intérieur vide.

Comme A^c est l'ensemble des fonctions continues dérivables en au moins un point de [0,1]

alors pour
$$f \in A^c$$
, il existe $x_0 \in [0,1]$ tel que $\frac{f(x_0) - f(y)}{x_0 - y}$ est bornée lorsque $y \to x_0$.
On pose $\forall n \in \mathbb{N}^*$, $F_n = \{f \in \mathcal{C}^0([0,1]), \exists x \in [0,1], \forall y \in [0,1], |f(x) - f(y)| \leq n|x - y|\}$.

On pose
$$\forall n \in \mathbb{N}^*$$
, $F_n = \{ f \in \mathcal{C}^0([0,1]), \exists x \in [0,1], \forall y \in [0,1], |f(x) - f(y)| \le n|x - y| \}.$
Ainsi, $A^c \subset \bigcup_{n \in \mathbb{N}^*} F_n$.

• Montrons que $\forall n \in \mathbb{N}^*, F_n$ est fermé.

Soit $n \in \mathbb{N}^*$. Soit $(f_k)_{k \in \mathbb{N}} \in F_n^{\mathbb{N}}$ qui converge vers $f \in \mathcal{C}^0([0,1])$. On a

$$\forall k \in \mathbb{N}, \ \exists x_k \in [0, 1], \ \forall y \in [0, 1], \ |f_k(x_k) - f_k(y)| \le n|x_k - y|$$
 (*)

On a donc créé une suite $(x_k)_{k\in\mathbb{N}}$ de [0,1], c'est un compact donc il exite une sous-suite $(x_{\varphi(k)})_{k\in\mathbb{N}}$ qui converge vers $x_0 \in [0,1]$.

Soit $y \in [0,1]$. On souhaite montrer que $\lim_{k \to +\infty} f_{\varphi(k)}(y) - f_{\varphi(k)}(x_{\varphi(k)}) = f(y) - f(x_0)$ On a $\forall k \in \mathbb{N}$,

$$\left| \left(f_{\varphi(k)}(y) - f_{\varphi(k)}(x_{\varphi(k)}) \right) - \left(f(y) - f(x_0) \right) \right| \leq \left| f_{\varphi(k)}(y) - f(y) \right| + \left| f_{\varphi(k)}(x_{\varphi(k)}) - f(x_{\varphi(k)}) \right|$$

$$+ \left| f(x_{\varphi(k)}) - f(x_0) \right|$$

$$\leq 2 \underbrace{\left\| f_{\varphi(k)} - f \right\|_{\infty}}_{k \to +\infty} + \underbrace{\left| f(x_{\varphi(k)}) - f(x_0) \right|}_{k \to +\infty} \underbrace{\left| f(x_{\varphi(k)}) - f(x_0) \right|}_{car \ f \in \mathcal{C}^0}$$

En passant à la limite dans (\star) on obtient $|f(y) - f(x_0)| \leq n|y - x_0|$. Donc, $f \in F_n$. Ainsi, F_n est fermé.

• Montrons que $\forall n \in \mathbb{N}, \, \mathring{F}_n = \emptyset$.

Soit $f \in \mathcal{C}^0([0,1])$. On va montrer que $\forall \varepsilon > 0, \ B(f,\varepsilon) \cap F_n^c \neq \emptyset$. Or,

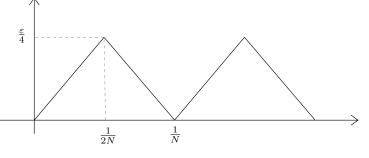
$$F_n^c = \{g \in \mathcal{C}^0([0,1]), \ \forall x \in [0,1], \ \exists y \in [0,1], \ |f(x) - f(y)| > n|x - y|\}$$

Soit $\varepsilon > 0$. D'après le théorème de Weierstrass, les polynômes sont denses dans les fonctions continues. Donc, il existe un polynôme P tel que $\|P - f\|_{\infty} \leqslant \frac{\varepsilon}{2}$.

L'idée est d'ajouter à P une fonction $g_0 \in \mathcal{C}^0([0,1])$ telle que $P + g_0 \in \mathcal{F}_n^c$.

Soit $N \in \mathbb{N}^*$. Comme $[0,1] = \bigcup_{k=0}^{N-1} \left[\frac{k}{N}, \frac{k+1}{N} \right]$ alors, on pose g_0 une fonction $\frac{1}{N}$ -périodique définie par

$$g_0(x) = \begin{cases} \frac{\varepsilon N}{2} x & \text{si } x \in \left[0, \frac{1}{2N}\right] \\ \frac{\varepsilon}{2} - \frac{\varepsilon N}{2} x & \text{si } x \in \left]\frac{1}{2N}, \frac{1}{N}\right] \end{cases}$$



La fonction $g_0 \in \mathcal{C}^0([0,1])$ et est dérivable sauf en un nombre fini de points et $|g_0'(x)| = \frac{\varepsilon N}{2}$. De plus, $\sup_{x \in [0,1]} |g_0(x)| = \frac{\varepsilon}{4}$. On pose $g = P + g_0$. Ainsi, $||f - g||_{\infty} \le ||f - P||_{\infty} + ||g_0||_{\infty} \le \frac{\varepsilon}{2} + \frac{\varepsilon}{4} < \varepsilon$

Donc $g \in B(f, \varepsilon)$.

Il reste à montrer que $g \in F_n^c$. Par l'inégalité triangulaire inverse, on a $\forall (x,y) \in [0,1]^2$,

$$|g(y) - g(x)| \geqslant \left| |g_0(y) - g_0(x)| - |P(y) - P(x)| \right|$$

$$\geqslant |g_0(y) - g_0(x)| - |P(y) - P(x)|$$

$$\geqslant |g_0(y) - g_0(x)| - \underbrace{M|y - x|}_{\text{inégalité des accr. finis}} \quad \text{où } M = \sup_{x \in [0,1]} |P'(x)|$$

Pour $x \in [0, 1]$ fixé, on choisit y sur le même segment $\left[\frac{k}{2N}, \frac{k+1}{2N}\right]$. Sur cet intervalle, g_0 est dérivable donc par le théorème des accroissements finis, il existe

c entre x et y tel que $|g_0(y) - g_0(x)| = |g'_0(c)||y - x| = \frac{\varepsilon N}{2}|y - x|$. Ainsi, $\forall x \in [0, 1], \exists y \in [0, 1], |g(y) - g(x)| \ge \left(\frac{\varepsilon N}{2} - M\right) |y - x|.$

Il suffit alors de prendre $N \in \mathbb{N}$ tel que $\frac{\varepsilon N}{2} - M > n$ i.e. $N > \frac{2(M+n)}{\varepsilon}$.

On a alors trouvé $g \in F_n^c \cap B(f, \varepsilon)$. Donc $\mathring{F}_n = \emptyset$.

En prenant le complémentaire, on a $\bigcap_{n\in\mathbb{N}^*} F_n^c = \left(\bigcup_{n\in\mathbb{N}^*} F_n\right)^c \subset A$.

Finalement, $(F_n^c)_{n\in\mathbb{N}^*}$ est une suite d'ouverts denses dans $\mathcal{C}^0([0,1])$.

Remarque. $x \mapsto \sum_{n=0}^{+\infty} \frac{d(4^n x, \mathbb{Z})}{4^n}$ est continue sur \mathbb{R} mais n'est dérivable en aucun point.

Démonstration. (Hauchecorne p.161-162)

La fonction $g: x \mapsto d(x, \mathbb{Z})$ est 1-périodique et $\forall x \in \left[-\frac{1}{2}, \frac{1}{2}\right], g = |\cdot|$.

Donc, g est à valeurs dans $\left[0,\frac{1}{2}\right]$ sur \mathbb{R} , elle est donc 1-lipschitzienne sur \mathbb{R} .

Posons $\forall n \in \mathbb{N}, u_n : x \mapsto \frac{g(4^n x)}{4^n}$ une fonction 1-lipschitienne et 4^{-n} -périodique.

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ |u_n(x)| \le \frac{1}{2 \times 4^n}$$

Donc, par le théorème de comparaison, $\sum u_n$ converge uniformément sur \mathbb{R} .

On a alors l'existence de $f: x \mapsto \sum_{n=0}^{+\infty} \overline{g(4^n x)}$ qui est continue sur $\mathbb R$ en tant que limite uniforme d'une suite de fonctions continues.

En faisant le taux d'accroissement, on a pour $a \in \mathbb{R}$,

$$\frac{f(a+4^{-n})-f(a)}{4^{-n}} = \sum_{k=0}^{n-1} \frac{u_k(a+4^{-n})-u_k(a)}{4^{-n}}$$

Or le coefficient directeur de u_k est ± 1 . Donc, on fait une somme de n termes égaux à ± 1 . Donc, le taux d'accroissement sera soit pair (si n est pair) soit impair. Ce qui est impossible. Donc, $\frac{f(a+4^{-n})-f(a)}{4^{-n}}$ n'admet pas de limite.