162 : Systèmes d'équations linéaires, opérations élémentaires, aspects algorithmiques et conséquences théoriques

Pandou

9 janvier 2022

1 Systèmes linéaires et généralités

1.1 Définitions

Définition 1. Un système linéaire est un système d'équations de la forme

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n} &= b_2 \\ \dots & \dots & \dots \\ a_{p1}x_1 + a_{p2}x_2 + \dots + a_{pn} &= b_p \end{cases}$$

Reformulation matricielle : Si
$$A=(a_{i,j})\in M_{p,n}(K)$$
 et $b=\begin{pmatrix}b_1\\\vdots\\b_p\end{pmatrix}\in K^p$, alors

le système linéaire se met sous la forme AX=b.

Proposition 2. Le système linéaire précédent possède au moins une solution si, et seulement si, $b \in \text{Im}(A)$

Exemple 3 : $\begin{cases} x+y = 1 \\ x = 0 \end{cases}$ admet au moins une solution, alors que $\begin{cases} x+y = 1 \\ x+y = 0 \end{cases}$ n'admet pas de solutions.

Définition 4. On dit qu'une matrice A est échelonnée si les lignes commencent par un nombre de zéros strictement croissant à mesure que l'indice augmente : ie $i \mapsto \inf\{j, a_{i,j} \neq 0\}$ est strictement croissante.

1.2 Systèmes de Cramer

Définition 5. Un système linéaire est de Cramer si la matrice associée est carrée et inversible.

Proposition 6. Un système de Cramer admet toujours une unique solution. Si $A = (A_1|...|A_n)$, alors les solutions x_i de Ax = b sont données par

$$x_i = \frac{\det(A_1|...|A_{i-1}|b|A_{i+1}|...|A_n)}{\det(A)}$$

Remarque 7: Pour calculer un déterminant, on préfèrera utiliser plutôt une méthode type pivot de Gauss, mais dans ce cas celui-ci donne aussi directement les solutions du système de Cramer... en pratique, on n'utilisera pas cette formule en dehors du cas n=2 ou des cas de matrices creuses.

2 Méthodes de résolution directes

2.1 Pivot de Gauss

Proposition 8. $GL_p(K)$ agit sur $M_{p,n}(K)$ par multiplication à gauche. A et A' sont dans la même orbite si, et seulement si, Ker(A) = Ker(A').

Corollaire 9. L'ensemble des solutions d'un système linéaire ne change pas si on change les équations par les opérations élémentaires suivantes :

- 1. Changer l'ordre des équations.
- 2. Multiplier une ligne par un scalaire non nul.
- 3. Ajouter à une ligne une combinaison linéaire des autres équations.

Définition 10. Les matrices élémentaires sont :

- 1. Les matrices de transpositions : $U_{i,j} = I_n E_{i,i} E_{j,j} + E_{i,j} + E_{j,i} \ (i \neq j)$.
- 2. Les matrices de dilatation de rapport $\lambda \neq 0$: $D_i(\lambda) = I_n + (\lambda 1)E_{i,i}$.
- 3. Les matrices de transvection de rapport $\lambda : T_{i,j}(\lambda) = I_n + \lambda E_{i,j} \ (i \neq j)$.

Reformulation matricielle: On a les résultats suivants:

- 1. Multiplier à gauche par $U_{i,j}$ revient à faire $L_i \longleftrightarrow L_j$.
- 2. Multiplier à gauche par $D_i(\lambda)$ revient à faire $L_i \leftarrow \lambda L_i$.
- 3. Multiplier à gauche par $T_{i,j}(\lambda)$ revient à faire $L_i \leftarrow L_i + \lambda L_j$.

Théorème 11 (Pivot de Gauss). Soit $A \in M_{p,n}(K)$, alors il existe une unique matrice échelonnée qui est dans l'orbite de A pour l'action à gauche de $GL_p(K)$ sur $M_{p,n}(K)$.

Remarque 12 : Ce résultat se démontre algorithmiquement : sa démonstration donne l'algorithme du pivot de Gauss.

Proposition 13. Soit $A = (A_1|...|A_n)$ et $B = (B_1|...|B_n)$ dans la même orbite, alors $Vect(A_1,...,A_n) = Vect(B_1,...,B_n)$.

Corollaire 14. Soit $v_1, ..., v_p$ des vecteurs, alors les lignes non nulles de la réduite échelonnée de $(v_1|...|v_p)$ donnent une base de $\text{Vect}(v_1, ..., v_p)$.

Application 15: Extraire une base d'une famille génératrice.

Application 16 : Si on a une famille génératrice de F et de G, on peut trouver une base de F+G.

Application 17: Si F est engendré par des vecteurs $(v_1, ..., v_p)$, disons que même c'est une base quitte à extraire, alors on peut obtenir une équation de F (ie déterminer F^{\perp}).

Application 18 : Pour résoudre le système linéaire, on échelonne et on "remonte" la résolution.

Application 19: Calcul du rang d'une matrice.

Théorème 20. Les transvections et les dilatations engendrent $GL_n(K)$.

Proposition 21. $GL_n(K)$ agit sur $M_{p,n}(K)$ par multiplication à droite. Alors, A et A' sont dans la même orbite si, et seulement si, Im(A) = Im(A').

Théorème 22. $GL_p(K) \times GL_n(K)$ agit sur $M_{p,n}(K)$ par équivalence, alors A et A' sont dans la même orbite si, et seulement si, rg(A) = rg(A').

Un représentant d'une matrice de rang r est la matrice $J_r = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.

Application 23: Calcul de l'inverse d'une matrice.

2.2 Méthode LU

Théorème 24. Soit $A = (a_{i,j})_{1 \leqslant i,j \leqslant n}$ une matrice telle que tous les mineurs principaux $\det \left((a_{i,j})_{1 \leqslant i,j \leqslant k} \right)$ sont tous non nuls, alors il existe un unique couple (L,U) avec U triangulaire supérieure et L triangulaire inférieure, avec diagonale de 1 tel que

$$A = LU$$

Calcul pratique : Pour trouver les coefficients en pratique, on explicite les coefficients de L et U que l'on exprime en fonction de ceux de A grâce à la relation A=LU.

Application 24 : Lorsque A est tridiagonale, la décomposition LU est très simple!

Théorème 25 (Cholesky). Soit $A \in S_n^{++}(\mathbb{R})$, alors il existe une unique matrice triangulaire inférieure T à coefficients diagonaux positifs telle que

$$A = TT^*$$

Calcul pratique: Pour trouver les coefficients en pratique, on fait comme pour la décomposition LU.

Corollaire 26 (Décomposition QR). Si $A \in GL_n(\mathbb{R})$, il existe un unique couple (Q,R) avec Q orthogonale, R triangulaire supérieure à coefficients diagonaux strictement positifs tels que

$$A = QR$$

2.3 Pivot de Gauss dans $\mathbb Z$ 3 MÉTHODES ITÉRATIVES

Corollaire 27 (Inégalité d'Hadamard). Soit $A \in S_n^+(\mathbb{R})$, alors

$$\det(A) \leqslant \prod_{i=1}^{n} a_{i,i}$$

2.3 Pivot de Gauss dans \mathbb{Z}

DEVELOPPEMENT 1

Théorème 28. $SL_2(\mathbb{Z})$ est engendré par $T=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $U=\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

Corollaire 29. $SL_2(\mathbb{Z})$ est engendré par $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Application 30: Soit $\mathbb{H} = \{z \in \mathbb{C}, \text{Im}(z) > 0\}$, alors $SL_2(\mathbb{Z})$ agit sur \mathbb{H} via

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

Soit $\mathcal{D} = \left\{ z \in \mathbb{H}, |\text{Re}(z)| \leqslant \frac{1}{2}, |z| \geqslant 1 \right\}$, alors \mathcal{D} rencontre toutes les orbites.

3 Méthodes itératives

3.1 Résolutions des systèmes linéaires

Définition 31. Soit $A \in GL_n(\mathbb{R})$. On suppose qu'il existe $(M,N) \in GL_n(\mathbb{R}) \times M_n(\mathbb{R})$ avec A = M - N. La méthode itérative associée à (M,N) est la suite définie par $\begin{cases} u_0 & \in \mathbb{R}^n \\ Mu_{n+1} & = Nu_n + b \end{cases}$

Définition 32 (Méthode de Jacobi). Soit $A \in M_n(\mathbb{R})$, D la diagonale de A. La méthode de Jacobi est la méthode itérative associée à la décomposition

$$M = D$$
 et $N = D - A$

Définition 33 (Méthode de Gauss-Seidel). Si $A \in GL_n(\mathbb{R})$, on prend pour M le triangle inférieur de A et N = M - A.

DEVELOPPEMENT 2

Lemme 34. Soit \mathcal{N} l'ensemble des normes subordonnées sur $M_n(\mathbb{C})$. Alors, pour tout $A \in M_n(\mathbb{C})$,

$$\rho(A) = \inf_{\mathcal{N}} \|A\|$$

Théorème 35. Soit $A \in GL_n(\mathbb{R})$ et $(M,N) \in GL_n(\mathbb{R}) \times M_n(\mathbb{R})$ tels que A = M-N. Alors, la suite (u_n) définie par $\begin{cases} u_0 \in \mathbb{R}^n \\ u_{n+1} = M^{-1}(Nu_n+b) \end{cases}$ converge si, et seulement si, $\rho(M^{-1}N) < 1$.

Proposition 37. Si A est symétrique définie positive, alors la méthode de Gauss-Seidel converge.

3.2 Optimisation

Proposition 38. Soit $A \in S_n^{++}(\mathbb{R})$, la solution de Ax = b est celle qui réalise le minimum de $J(x) = \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle$.

Application 39 : Descente de gradient à pas optimal. On se donne une suite de direction δ_k , ie des vecteurs unitaires de \mathbb{R}^n . Alors, la suite

$$x_{k+1} = x_k - \frac{\langle r_k, \delta_k \rangle}{\langle A\delta_k, \delta_k \rangle} \delta_k$$
 avec $r_k = \nabla J(x_k)$

qui converge vers la solution de Ax = b.

La descente de gradient à pas optimal est obtenue pour $\delta_k = \frac{\nabla J(x_k)}{\|\nabla J(x_k)\|}$.

Références:

- Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation.
- Grifone, Algèbre linéaire.
- Gourdon, Algèbre.
- Rombaldi, Analyse matricielle.