157: Endomorphismes trigonalisables. Endomorphismes nilpotents.

Pandou

27 mars 2022

On fixe un espace vectoriel E de dimension finie n sur un corps K.

1 Endormophismes nilpotents

1.1 Définitions et caractérisations

Définition 1. On dit que $u \in \mathcal{L}(E)$ est nilpotent s'il existe $n \in \mathbb{N}$ tel que $u^n = 0$. Le plus petit entier n tel que $u^n = 0$ est appelé indice de nilpotence de u. On note $\mathcal{N}(E)$ l'ensemble des endomorphismes nilpotents.

Exemple 2 : Les endomorphismes associés à $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et à $\begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$ sont nilpotents.

Proposition 3. u est nilpotent si, et seulement si, pour tout $x \in E$, il existe $n \in \mathbb{N}$ tel que $u^n(x) = 0$.

Exemple 4 : La dérivation est nilpotente sur $K_n[X]$. Ce même exemple montre que l'hypothèse de dimension finie est primordiale.

Proposition 5. Soit u nilpotent d'indice p, alors il existe $x_0 \in E$ tel que $(x_0, u(x_0), ..., u^{p-1}(x_0))$ est libre.

Corollaire 6. L'indice de nilpotence est majoré par n, la dimension de E.

Théorème 7. Soit $u \in \mathcal{L}(E)$. Alors, on a équivalence entre :

- 1. u est nilpotent.
- 2. $\chi_u(X) = X^n$.
- 3. $\mu_u(X) = X^p$ où p est l'indice de nilpotence de u.
- 4. Si K est algébriquement clos, 0 est la seule valeur propre de u.

Remarque 8: Le dernier point est faux si K n'est pas algébriquement clos : dans $M_n(\mathbb{R})$, $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$ a 0 pour unique valeur propre, mais n'est pas nilpotent.

Corollaire 9. Si K est de caractéristique nulle, alors u est nilpotent si, et seulement si, $\operatorname{Tr}(u^k) = 0$ pour tout $k \in \mathbb{N}$.

Remarque 10 : Si K est de caractéristique p, le résultat est faux. Par exemple, $M=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ dans \mathbb{F}_2 vérifie $M^2=I_2$ et donc $\mathrm{Tr}(M^k)=0$, pourtant M n'est pas nilpotente.

Application 11 : Soit G un sous-groupe de $GL_n(\mathbb{C})$ tel qu'il existe $n \in \mathbb{N}$ tel que $\forall g \in G, g^n = 1$. Si $(g_1, ..., g_p)$ est une base de Vect(G), alors

$$g \longmapsto (\operatorname{Tr}(gg_1), ..., \operatorname{Tr}(gg_p)) \in \mathbb{C}^p$$

est injective. On en déduit que G est fini.

Proposition 12. Soit u nilpotent et F un sous-espace stable par u, alors $u_{|F}$ est nilpotent.

1.2 Cône nilpotent

Proposition 13. Si u est nilpotent et $\lambda \in K$, alors λu est nilpotent.

Proposition 14. Soit $u, v \in \mathcal{L}(E)$, si u et v commutent et sont nilpotents, alors u + v et $u \circ v$ sont nilpotents.

Contre-exemple 15: La commutativité est primordiale : $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} =$ $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Théorème 16. L'espace vectoriel engendré par les endomorphismes nilpotents est l'espace des endomorphismes de trace nulle.

Application 17: On peut dessiner le cône des matrices nilpotentes de taille 2 comme étant le cône d'équation $\{x^2 + yz = 0\}$ (voir figure 1).

DEVELOPPEMENT 1

Lemme 18 (Décomposition de Fitting). L'application $u \in \mathcal{L}(E) \mapsto$ $(F, G, u_{|F}, u_{|G})$ à valeurs dans l'ensemble des quadruplets (F, G, v, w) tels que

- 1. $E = F \oplus G$
- 2. $v \in \mathcal{N}(F)$.
- 3. $w \in GL(G)$.

est une bijection.

Application 19: Dans $M_n(\mathbb{F}_q)$, il y a $q^{n(n-1)}$ matrices nilpotentes.

Endomorphismes unipotents

Définition 20. On dit qu'un endomorphisme u est unipotent si u-Id est nilpotent. On note $\mathcal{U}(E)$ l'ensemble des endomorphismes unipotents.

Théorème 21. Soit $u \in \mathcal{L}(E)$, alors on a équivalence entre :

- 1. u est unipotent.
- 2. $\chi_u(X) = (X-1)^n$.
- 3. $\mu_{\nu}(X) = (X-1)^p$ où p est l'indice de nilpotence de $u-\mathrm{Id}$.
- 4. Si K est algébriquement clos, 1 est la seule valeur propre de u.

Définition 22. Si u est nilpotente, alors on définit

$$\log(\mathrm{Id} + u) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{u^n}{n}$$

Théorème 23. exp : $\mathcal{N}(E) \longrightarrow \mathcal{U}(E)$ et log : $\mathcal{U}(E) \longrightarrow \mathcal{N}(E)$ sont des applications réciproques l'une de l'autre. Ce sont même des homéomorphismes.

Proposition 24. Soit $u \in \mathcal{L}(E)$, alors u est nilpotent si, et seulement si, 0 est adhérent à la classe de conjugaison de u.

Proposition 25. $\mathcal{N}(E)$ est fermé et d'intérieur vide.

Endomorphismes trigonalisables

Définitions et caractérisations

Définition 26. Soit $u \in \mathcal{L}(E)$, on dit que u est trigonalisable s'il existe une base dans laquelle la matrice de u est triangulaire.

Remarque 27: Triangulaire supérieure ou inférieure n'importe pas car toute matrice triangulaire inférieure est semblable à une matrice triangulaire supérieure.

Théorème 28. Soit $u \in \mathcal{L}(E)$, alors on a équivalence entre :

- 1. u est trigonalisable.
- 2. χ_u est scindé.
- 3. μ_n est scindé.
- 4. u admet un polynôme annulateur scindé.

Exemples 29:

- $M_1 = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}$ est trigonalisable car $\chi_{M_1} = (X-2)^2(X-3)$. $M_2 = \begin{pmatrix} 2 & 2 & -3 \\ 5 & 1 & -5 \\ -3 & 4 & 0 \end{pmatrix}$ est trigonalisable car $\chi_{M_2} = (X-1)^3$.

Corollaire 30. Si K est algébriquement clos, alors tout endomorphisme de E est trigonalisable.

Application 31: Si $K = \mathbb{C}$, l'ensemble des endormophismes diagonalisables est dense dans $M_n(\mathbb{C})$.

Proposition 32. Soit $u \in \mathcal{L}(E)$ et F un sous-espace stable par u, alors si u est trigonalisable, $alors u_{|F}$ est trigonalisable.

Application 33 : Cette proposition a un intérêt pratique pour trouver une base de trigonalisation. Si on a un vecteur propre v de u, soit H un supplémentaire à Kv et p la projection sur H parallèlement à v, alors $p \circ u_{|H}$ est encore trigonalisable et on peut de nouveau chercher un vecteur propre de $p \circ u_{|H}$.

Théorème 34. Soit $(u_i)_{i \in I}$ une famille d'endomorphismes trigonalisables qui commutent deux à deux, alors (u_i) sont trigonalisables dans une même base.

Lemme 35. Soit $P \in \mathbb{R}[X]$ de degré n et unitaire. Alors, P est scindé si, et seulement si, $\forall z \in \mathbb{C}, |P(z)| \geqslant |\mathrm{Im}(z)|^n$.

Théorème 36. On suppose que $K = \mathbb{R}$, alors l'ensemble des endomorphismes trigonalisables est un fermé de $\mathcal{L}(E)$.

L'adhérence de l'ensemble des endomorphismes diagonalisables est l'ensemble des endomorphismes trigonalisables.

3 Réduction

3.1 Décomposition de Dunford

Lemme 37 (des noyaux). Soit $u \in \mathcal{L}(E)$ et $P_1, ..., P_r \in K[X]$ deux à deux premiers entre eux et $P = \prod_{i=1}^r P_i$, alors

$$\operatorname{Ker}(P(u)) = \bigoplus_{i=1}^{r} \operatorname{Ker}(P_i(u))$$

De plus, les projecteurs sur $\operatorname{Ker}(P_i(u))$ parallèlement à $\bigoplus_{j\neq i} \operatorname{Ker}(P_j(u))$ sont des polynômes en u.

Théorème 38. Soit $u \in \mathcal{L}(E)$ trigonalisable (ie χ_u est scindé). Il existe un unique couple (d, n) d'endomorphismes tels que

- 1. d est diagonalisable.
- 2. n est nilpotent.
- 3. [d, n] = 0.
- 4. u = d + n.

 $De\ plus,\ d\ et\ n\ sont\ des\ polynômes\ en\ u.$

Application 39 : Soit \mathcal{A} une sous-algèbre de $\mathcal{L}(E)$ dont le seul élément nilpotent est 0, alors \mathcal{A} est codiagonalisable.

Corollaire 40. Soit $f \in GL(E)$ trigonalisable (ie χ_f est scindé). Il existe un unique couple (d, u) d'endomorphismes tels que

- 1. d est diagonalisable.
- 2. u est unipotent.
- 3. [d, u] = 0.
- 4. $f = d \circ u$.

Application 41: exp: $M_n(\mathbb{C}) \longrightarrow GL_n(\mathbb{C})$ est surjective.

3.2 Réduction de Jordan

Théorème 43. Soit $u \in \mathcal{L}(E)$ nilpotent d'indice n, alors il existe une base dans laquelle la matrice de u est J_n .

Théorème 44. Soit $u \in \mathcal{L}(E)$ un endomorphisme nilpotent. Alors, il existe une unique partition $n_1 \geqslant ... \geqslant n_p$ de n et une base dans laquelle la matrice de u est $\operatorname{diag}(J_{n_1},...,J_{n_p})$.

L'entier n_1 est l'indice de nilpotence de u et on a même plus précisément

$$n_j = 2 \dim \left(\operatorname{Ker}(u^j) \right) - \dim \left(\operatorname{Ker}(u^{j-1}) \right) - \dim \left(\operatorname{Ker}(u^{j+1}) \right)$$

Application 45: $u \in \mathcal{L}(E)$ est nilpotent si, et seulement si, u et 2u sont semblables.

Théorème 46. Soit $u \in \mathcal{L}(E)$ trigonalisable (ie χ_u est scindé). On note $J_n(\lambda) = \lambda I_n + J_n$. Alors, il existe une base de E dans laquelle la matrice de u est $\operatorname{diag}(J_{n_1}(\lambda_1),...,J_{n_n}(\lambda)_p)$ où $\operatorname{Sp}(u) = \{\lambda_1,...,\lambda_p\}$.

Application 47: Toute matrice de $M_n(\mathbb{C})$ est semblable à sa transposée.

3.3 Vers les algèbres de Lie 4 ANNEXE

3.3 Vers les algèbres de Lie

Définition 48. Une algèbre de Lie est un espace vectoriel \mathfrak{g} muni d'une application bilinéaire $[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\longrightarrow\mathfrak{g}$ antisymétrique et qui vérifie l'identité de Jacobi

$$\forall x,y,z \in \mathfrak{g}, \left[x,[y,z]\right] + \left[y,[z,x]\right] + \left[z,[x,y]\right] = 0$$

Si $x \in \mathfrak{g}$, on définit $ad(x) : y \in \mathfrak{g} \longmapsto [x,y] \in \mathfrak{g}$. Le centre de \mathfrak{g} est $Z(\mathfrak{g}) = Ker(ad)$

Exemples 49:

- (\mathbb{R}^3, \wedge) est une algèbre de Lie (où \wedge est le produit vectoriel).
- $\mathcal{L}(V)$ muni du crochet naturel $[u,v]=u\circ v-v\circ u$ est une algèbre de Lie notée $\mathfrak{gl}(V)$.

Proposition 50. Si $x, y \in \mathfrak{g}$, alors

$$\operatorname{ad}([x,y]) = [\operatorname{ad}(x),\operatorname{ad}(y)]$$

où le second crochet est celui de $\mathfrak{gl}(\mathfrak{g})$.

DEVELOPPEMENT 2

Lemme 51. Soit $x \in \mathfrak{gl}(V)$, alors on a équivalence entre :

- 1. x est diagonalisable (resp. nilpotent).
- 2. ad(x) est diagonalisable (resp. nilpotent).

Théorème 52 (Engel). Soit V un espace de dimension finie et $\mathfrak g$ une sous-algèbre de $\mathfrak{gl}(V)$ constitué seulement d'éléments nilpotents, alors $\mathfrak g$ est cotrigonalisable.

Définition 53. On dira que $x \in \mathfrak{g}$ est diagonalisable (resp. nilpotent) lorsque $\operatorname{ad}(x)$ est diagonalisable (resp. nilpotent).

Définition 54. Soit $\mathfrak g$ une algèbre de Lie, on dit que $\mathfrak g$ est nilpotente lorsqu'il existe $n \in \mathbb N$ tel que

$$\forall x_1, ..., x_n \in \mathfrak{g}, \forall y \in \mathfrak{g}, \operatorname{ad}(x_1) \circ ... \circ \operatorname{ad}(x_n) \cdot y = 0$$

Proposition 55. Si $\mathfrak{g}/Z(\mathfrak{g})$ est nilpotente, alors \mathfrak{g} est nilpotente.

Théorème 56 (Engel, v2). g est nilpotente si, et seulement si, tous les éléments de g sont nilpotents.

4 Annexe

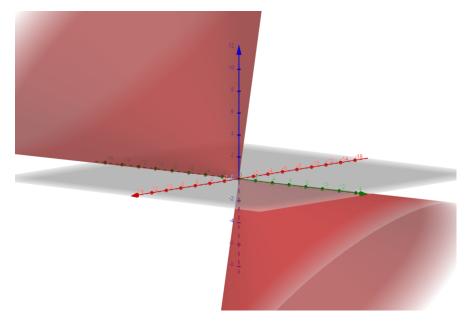


FIGURE 1 – Cône nilpotent $\{x^2 + yz = 0\}$.

Références:

- Caldero, Germoni, H2G2.
- Cognet, Algèbre linéaire.
- Gourdon, Algèbre.
- Humphreys, Lie Algebras and Representation Theory.