155 : Endomorphismes diagonalisables en dimension finie.

Pandou

21 mai 2022

On fixe un K-espace vectoriel E de dimension n.

1 Éléments propres

1.1 Valeur propre, espaces propres

Définition 1. Soit $\lambda \in K$ et $u \in \mathcal{L}(E)$, on dit que λ est une valeur propre de u s'il existe $x \neq 0$ tel que $u(x) = \lambda x$. Un tel vecteur x est appelé vecteur propre associé à la valeur propre λ .

On note Sp(u) l'ensemble des valeurs propres de u. Et $E_{\lambda}(u)$ l'ensemble des vecteurs propres associés à la valeur propre λ .

Remarque 2: Si $A \in M_n(K)$, une valeur propre de A est une valeur propre de l'endomorphisme $X \longmapsto AX$.

Exemples 3:

- ullet Une homothétie n'a qu'une seule valeur propre et son espace propre est E tout entier.
- $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ n'a pas de valeur propre réelle.
- 1 est valeur propre si, et seulement si, les points fixes de *u* forment un sous-espace non trivial.

Proposition 4. Soit $\lambda_1, ..., \lambda_k \in \operatorname{Sp}(u)$ des valeurs propres distinctes, alors la somme $\sum_{i=1}^{k} E_{\lambda_i}(u)$ est toujours directe.

1.2 Polynôme caractéristique

Définition 5. Soit $u \in \mathcal{L}(E)$. Le polynôme caractéristique de u est le polynôme $\chi_u(X) = \det(X \operatorname{Id} - u)$.

Remarque 6:

- Soit $A \in M_n(K)$, alors la polynôme caractéristique de A est le polynôme caractéristique de $X \longmapsto AX$.
- Deux matrices sont semblables ont même polynôme caractéristique.

• Une matrice et sa transposée ont même polynôme caractéristique.

Exemple 7: Si dim(E) = 2, alors $\chi_u(X) = X^2 - \text{Tr}(u)X + \det(u)$.

Proposition 8. Les racines de χ_u forment exactement le spectre de u. La multiplicité d'une racine de χ_u est alors appelée multiplicité algébrique de la valeur propre.

Corollaire 9. Si K est alg'ebriquement clos, alors tout endomorphisme a au moins un valeur propre.

Exemple 10: Les valeurs propres de $\begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$ sont 2 et 3.

Corollaire 11. Un endomorphisme u a au plus n valeurs propres.

Proposition 12. Soit $u \in \mathcal{L}(E)$ et F un sous-espace stable par u, alors $\chi_{u_{|F|}}$ divise χ_u .

Application 13: Si u est nilpotent, alors $\chi_u = X^n$.

1.3 Diagonalisabilité

Définition 14. On dit que $u \in \mathcal{L}(E)$ est diagonalisable si, et seulement s'il existe une base de vecteurs propres de u. Alors, la matrice de u dans une telle base est diagonale.

Remarque 15 : $A \in M_n(K)$ est diagonalisable si, et seulement si, A est semblable à une matrice diagonale.

Proposition 16. Si χ_u est scindé à racines simples, u est diagonalisable.

Remarque 17 : La réciproque est fausse : toute homothètie est diagonalisable, mais $\chi_u = (X - \lambda)^n$.

Proposition 18. Soit λ une valeur propre de u de multiplicité algébrique m_{λ} , alors

$$\dim (E_{\lambda}(u)) \leqslant m_{\lambda}$$

Théorème 19. Soit $u \in \mathcal{L}(E)$, on a alors équivalence entre :

1. u est diagonalisable.

2. χ_u est scindé sur K et $\forall \lambda \in \operatorname{Sp}(u), \dim (E_{\lambda}(u)) = m_{\lambda}$.

3.
$$E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} E_{\lambda}(u)$$
.

4.
$$\dim(E) = \sum_{\lambda \in \text{Sp}(u)} \dim(E_{\lambda}(u)).$$

Méthode 20 : (Diagonalisation effective) On cherche à diagonaliser une matrice A

- Calcul de χ_A , détermination des valeurs propres de A et de leur multiplicité algébrique.
- Pour chaque $\lambda \in \operatorname{Sp}(A)$, résoudre $AX = \lambda X$.
- En déduire la dimension et une base de $E_{\lambda}(A)$. Si la dimension coincide avec la multiplicité algébrique, A est diagonalisable, sinon, A n'est pas diagonalisable.
- Mettre les vecteurs trouvés précédemment dans les colonnes d'une matrice $P \in GL_n(K)$. Calculer P^{-1} .
- La matrice $P^{-1}AP$ est diagonale.

Application 21: Calcul des puissances d'une matrice :

$$\begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}^n = \begin{pmatrix} 2^{n+1} - 3^n & 2^{n+1} - 2 \cdot 3^n \\ -2^n + 3^n & -2^n + 2 \cdot 3^n \end{pmatrix}$$

2 Polynômes d'endomorphismes

2.1 Généralités, polynôme minimal

Proposition 22. Soit $P \in K[X]$ tel que P(u) = 0, alors toute valeur propre de u est valeur propre de P.

Remarque 23 : La réciproque est bien entendue fausse, mais la recherche de polynômes annulateurs donne des informations sur u.

Définition 24. $\{P \in K[X], P(u) = 0\}$ est un idéal de K[X] engendré par un unique polynôme unitaire, noté μ_u et appelé polynôme minimal de u.

Remarque 25:

- $K[u] = \{P(u), P \in K[X]\}$ est un sous-espace de $\mathcal{L}(E)$ de dimension $\deg(\mu_u)$.
- Le polynôme minimal de $A \in M_n(K)$ est le polynôme minimal de $X \longmapsto AX$.

 ${\bf Proposition~26.~~Deux~~matrices~~semblables~~ont~~m\^{e}me~~polyn\^{o}me~~minimal.}$

Remarque 27: La réciproque est fausse : si $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, alors diag(A, 0) et diag(A, A) ont même polynôme minimal X^2 , mais n'ont pas même rang.

Proposition 28. Les racines de μ_u sont exactement les valeurs propres de u.

Proposition 29. Soit $P \in K[X]$, alors u et P(u) commutent. En particulier, Ker(P(u)) et Im(P(u)) sont stables par u.

Lemme 30. Soit F un sous-espace stable par u, alors $\mu_{u|_F}$ divise μ_u .

Proposition 31. Soit F et G stables par u tels que $E = F \oplus G$, alors $\mu_u = \operatorname{ppcm}(\mu_{u|F}, \mu_{u|G})$.

Théorème 32 (Cayley-Hamilton). Soit $u \in \mathcal{L}(E)$, alors $\chi_u(u) = 0$.

2.2 Critère de diagonalisabilité

Théorème 33 (Lemme des noyaux). Soit $P_1, ..., P_r \in K[X]$ deux à deux premiers entre eux et $P = P_1...P_r$, alors

$$\operatorname{Ker}(P(u)) = \bigoplus_{i=1}^{r} \operatorname{Ker}(P_i(u))$$

Application 34: On note $E'_{\lambda}(u) = \bigcup_{k \in \mathbb{N}} \operatorname{Ker}((u - \lambda \operatorname{Id})^k)$, alors

$$E = \bigoplus_{\lambda \in \mathrm{Sp}(u)} E'_{\lambda}(u)$$

Théorème 35. Soit $u \in \mathcal{L}(E)$, on a équivalence entre :

- 1. u est diagonalisable.
- 2. μ_u est scindé à racines simples.
- 3. u est annulé par un polynôme scindé à racines simples.

Corollaire 36. Soit F un sous-espace stable par u, on suppose que u est diagonalisable, alors $u_{|F}$ est aussi diagonalisable.

Remarque 37 : Ce dernier résultat a l'air anodin, mais est non trivial sans le théorème précédent.

Application 38: On suppose que $K = \mathbb{F}_q$, alors u est diagonalisable si, et seulement si, $u^q = f$.

Application 39: Soit $A \in M_n(K)$, $A \neq 0$, alors $B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$ n'est pas diagonalisable.

2.3 Décomposition de Dunford

Théorème 40 (Décomposition de Dunford). Soit $u \in \mathcal{L}(E)$ tel que χ_u est scindé. Il existe un unique couple (d, n) d'endomorphismes tels que

- 1. u = d + n.
- 2. d est diagonalisable.
- 3. n est nilpotent.
- 4. $d \circ n = n \circ d$.

De plus, d et n sont des polynômes en u.

Méthode 41 : (Calcul effectif) Soit $A \in M_n(K)$.

- Calculer $\chi_A(X) = \prod_{i=1}^r (X \lambda_i)^{m_i}$, on note $Q_i = \prod_{j \neq i} (X \lambda_j)^{m_j} = \frac{\chi_A(X)}{(X \lambda_i)^{m_i}}$.
- Écrire une relation de Bézout entre les Q_i . (On pourra décomposer $\frac{1}{\chi_A}$ en éléments simples) : $\sum_{i=1}^r U_i Q_i = 1$.
- Les projecteurs spectraux sont $\pi_i = (U_i Q_i)(u)$ et alors $d = \sum_{i=1}^{n} \lambda_i \pi_i$ est la partie diagonalisable et n = u d la partie nilpotente.

Application 42: Calcul des puissances ou des exponentielles d'endomorphismes.

Proposition 43. Soit $A \in M_n(\mathbb{C})$, alors A est diagonalisable si, et seulement si, $\exp(A)$ est diagonalisable.

Application 44: On a $\exp(A) = I_n$ si, et seulement si, A est diagonalisable et de spectre dans $2i\pi\mathbb{Z}$.

3 Applications

3.1 Endomorphismes auto-adjoints

On suppose ici que E est un espace euclidien.

Définition 45. Soit $u \in \mathcal{L}(E)$, on dit que u est auto-adjoint si $\forall x, y \in E, \langle u(x), y \rangle = \langle x, u(y) \rangle$.

Lemme 46. Soit F un sous-espace stable par u auto-adjoint, alors F^{\perp} est stable par u.

Théorème 47. On suppose que u est auto-adjoint, alors il existe une base orthonormée de vecteurs propres pour f.

Corollaire 48. Soit $A \in S_n(\mathbb{R})$, alors il existe $P \in O_n(\mathbb{R})$ telle que P^TAP est diagonale.

Corollaire 49 (Pseudo-réduction simultanée). Soit $A \in S_n^{++}(\mathbb{R})$ et $B \in S_n(\mathbb{R})$, alors il existe $P \in GL_n(\mathbb{R})$ telle que

$$A = P^T P$$
 et $B = P^T D P$

avec D diagonale.

DEVELOPPEMENT 1

Théorème 50. 1. $S_n^{++}(\mathbb{R})$ est un ouvert de $S_n(\mathbb{R})$.

2. L'application $M \in S_n^{++}(\mathbb{R}) \longmapsto M^2 \in S_n^{++}(\mathbb{R})$ est un \mathcal{C}^1 -difféomorphisme.

3.2 Réduction simultanée

Lemme 51. Soit $u, v \in \mathcal{L}(E)$ tels que $u \circ v = v \circ u$. Alors,

- 1. Tout sous-espace propre de u est stable par v.
- 2. Im(u) est stable par v.

Théorème 52 (Diagonalisation simultanée). Soit $u, v \in \mathcal{L}(E)$ diagonalisables et qui commutent, il existe une base de diagonalisation commune à f et g.

Remarque 53 : La réciproque est bien entendue vraie.

Proposition 54. Soit $(u_i)_{i\in I}$ une famille d'endomorphismes diagonalisables commutant deux à deux. Alors, les $(u_i)_{i\in I}$ sont codiagonalisables.

DEVELOPPEMENT 2

Proposition 55. Soit $x \in M_n(\mathbb{C})$, on note $ad(x) : y \in M_n(\mathbb{C}) \longmapsto xy - yx$. On a équivalence entre :

- 1. x est diagonalisable (resp. nilpotent).
- 2. ad(x) est diagonalisable (resp. nilpotent).

Théorème 56. Soit A une sous-algèbre de $M_n(\mathbb{C})$ telle que le seul nilpotent est 0, alors A est codiagonalisable.

3.3 Résolution de problèmes linéaires

Méthode 57: (Suites récurrentes linéaires) Écrire le système sous la forme $X_{n+1} = AX_n$. La réduction de la matrice A permet de calculer facilement $X_n = A^n X_0$, ou son comportement asymptotique.

Proposition 58. Soit $A \in M_n(\mathbb{C})$, alors $A^n \longrightarrow 0$ si, et seulement si, $\forall \lambda \in \operatorname{Sp}(A), |\lambda| < 1$.

Théorème 59. Soit (u_n) une suite qui vérifie une suite récurrente linéaire homogène d'ordre $p: u_n = a_1u_{n-1} + ... + a_pu_{n-p}$. On note $r_1, ..., r_q$ les racines de $X^p - a_1X^{p-1} - ... - a_p$ et $\alpha_1, ..., \alpha_q$ leur multiplicité.

Il existe alors des polynômes P_i tels que $deg(P_i) < \alpha_i$ tels que

$$u_n = P_1(n)r_1^n + ... + P_q(n)r_q^n$$

3.4 Éléments de topologie 3 APPLICATIONS

Exemple 60: Si $u_n = au_{n-1} + bu_{n-2}$.

• Si r_1 et r_2 sont les racines de $X^2 - aX - b$, alors $u_n = \lambda r_1^n + \mu r_2^n$.

• Si r est l'unique racine double de $X^2 - aX - b$, alors, $u_n = (\lambda n + \mu)r^n$.

Méthode 61 : (Équations différentielles linéaires) Écrire l'équation différentielle sous la forme Y' = AY. La réduction de A (ou sa décomposition de Dunford) permet le calcul de $Y(t) = e^{tA}Y_0$, ou son comportement asymptotique.

Proposition 62. Soit $M \in M_n(\mathbb{C})$, alors $\lim_{t \to +\infty} e^{tM} = 0$ si, et seulement si, $\forall \lambda \in \operatorname{Sp}(M), \operatorname{Re}(\lambda) < 0$.

Théorème 63. On considère l'équation différentielle linéaire d'ordre $p:y^{(p)}+a_{p-1}y^{(p-1)}+\ldots+a_py=0$. On note r_1,\ldots,r_q les racines de $X^p+a_{p-1}X^{p-1}+\ldots+a_p$ et α_1,\ldots,α_q leur multiplicité.

Il existe alors des polynômes P_i tels que $deg(P_i) < \alpha_i$ tels que

$$y(t) = \sum_{i=1}^{q} e^{r_i t} P_i(t)$$

Exemple 64: Si y'' + ay' + by = 0,

- Si r_1 et r_2 sont les racines de $X^2 + aX + b$, alors $y(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$.
- Si r est l'unique racine double de $X^2 + aX + b$, alors $y(t) = (\lambda t + \mu)e^{rt}$.

3.4 Éléments de topologie

Proposition 65. L'ensemble des matrices diagonalisables à valeurs propres distinctes est dense dans $M_n(\mathbb{C})$. Dans $M_n(\mathbb{R})$, l'adhérence est l'ensemble des matrices trigonalisables.

Définition 66. Soit $u \in \mathcal{L}(E)$ et $x \in E$, $\{P \in K[X], P(u)(x) = 0\}$ est un idéal de K[X] engendré par un unique polynôme unitaire, noté $\mu_{u,x}$.

Théorème 67 (Admis). Soit $u \in \mathcal{L}(E)$, il existe $x \in E$ tel que $\mu_{u,x} = \mu_u$.

Définition 68. On dit que $u \in \mathcal{L}(E)$ est cyclique si, et seulement s'il existe $x \in E$ tel que $(x, u(x), ..., u^{n-1}(x))$ est une base de E.

Proposition 69. u est cyclique si, et seulement si, $\mu_u = \chi_u$.

Théorème 70. L'ensemble des endomorphismes cycliques de \mathbb{C}^n est un ouvert de $\mathcal{L}(\mathbb{C}^n)$. De plus, l'intérieur des matrices diagonalisables de $M_n(\mathbb{C})$ est l'ensemble des matrices cycliques.

Proposition 71. L'ensemble des matrices cycliques est un ouvert connexe de $M_n(\mathbb{C})$.

Proposition 72. L'application $M \in M_n(\mathbb{C}) \longmapsto \mu_m \in \mathbb{C}_n[X]$ n'est pas continue. L'ensemble des points de continuité de cette application est exactement l'ensemble des matrices cycliques de $M_n(\mathbb{C})$.

Proposition 73. Soit $A \in M_n(\mathbb{C})$, alors A est diagonalisable si, et seulement si, $\{P^{-1}AP, P \in GL_n(\mathbb{C})\}$ est fermé.

Références:

- Cognet, Algèbre linéaire.
- Gourdon, Algèbre.
- Gourdon, Analyse.
- Grifone, Algèbre linéaire.
- Mneimé, Testard, Introduction à la théorie des groupes de Lie classiques.