120 : Anneaux $\mathbb{Z}/n\mathbb{Z}$. Applications.

Pandou

23 avril 2022

1 Le groupe $\mathbb{Z}/n\mathbb{Z}$

1.1 Construction et propriétés

Définition 1. Soit $n \ge 2$, on définit une relation d'équivalence sur \mathbb{Z} en posant $a \equiv b \mod(n) \iff n \mid (a-b)$. Alors, l'ensemble $\mathbb{Z}/n\mathbb{Z}$ est le quotient \mathbb{Z}/\equiv .

Théorème 2 (Division euclidienne). Soit $a, n \in \mathbb{Z}$, $b \neq 0$, alors il existe un unique couple (q, r) tel que

$$a = nq + r$$
 et $0 \le r \le n - 1$

Corollaire 3. $\{0, 1, ..., n-1\}$ forme un système de représentants de $\mathbb{Z}/n\mathbb{Z}$.

Corollaire 4. L'addition est compatible avec la relation \equiv et donc induit une loi de groupe sur $\mathbb{Z}/n\mathbb{Z}$.

Proposition 5. $\mathbb{Z}/n\mathbb{Z}$ est cyclique, engendré par 1.

Théorème 6. Soit $n \ge 2$, tout groupe cyclique non trivial d'ordre n est isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

Remarque 7: Parfois, pour insister sur la structure de groupe, on pourra préférer l'utilisation du groupe cyclique $\mathbb{U}_n = \{z \in \mathbb{C}, z^n = 1\}$.

Corollaire 8. Tout sous-groupe d'un groupe cyclique est cyclique.

DEVELOPPEMENT 1

Application 9: Soit p un nombre premier impair, $n \ge 1$ et $q = p^n$. Alors,

$$SO_2(\mathbb{F}_q) \simeq \left\{ egin{array}{ll} \mathbb{Z}/(q-1)\mathbb{Z} & \mathrm{si} -1 \ \mathrm{n'est\ pas\ un\ carr\'e\ dans\ } \mathbb{F}_q^* \\ \mathbb{Z}/(q+1)\mathbb{Z} & \mathrm{sinon} \end{array}
ight.$$

Proposition 10. Les sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ sont exactement les sous-groupes d'ordre d engendré par $\frac{n}{d}$ pour d divisant n.

1.2 Ordre et générateurs

Proposition 11. L'ordre de k dans $\mathbb{Z}/n\mathbb{Z}$ est $\frac{n}{\operatorname{pgcd}(k,n)}$.

Corollaire 12. k est un générateur de $\mathbb{Z}/n\mathbb{Z}$ si, et seulement si, $k \wedge n = 1$.

Exemple 13 : Les générateurs de $\mathbb{Z}/4\mathbb{Z}$ sont 1 et 3.

Définition 14. On définit l'indicatrice d'Euler par $\varphi(n) = \operatorname{Card}(\{k \in [1, n], k \land n = 1\}).$

Proposition 15. Soit p un nombre premier et $n \ge 1$, alors

$$\varphi(p^n) = p^{n-1}(p-1)$$

Proposition 16.

$$n = \sum_{d|n} \varphi(d)$$

Corollaire 17. Soit K un corps, alors tout sous-groupe fini de K^* est cyclique.

2 L'anneau $\mathbb{Z}/n\mathbb{Z}$

2.1 Généralités

Proposition 18. La multiplication sur \mathbb{Z} est compatible avec la relation de congruence, donc elle induit sur $\mathbb{Z}/n\mathbb{Z}$ une structure d'anneaux.

Remarque 19: $n\mathbb{Z}$ est un idéal de \mathbb{Z} . La définition précédente de $\mathbb{Z}/n\mathbb{Z}$ coincide | Application 28: p est premier si, et seulement si, $(p-1)! = -1 \mod (p)$. avec le quotient de \mathbb{Z} par l'idéal $n\mathbb{Z}$.

Proposition 20 (Relation de Bézout). Soit a, b deux entiers. Alors, a et b sont premiers entre si, et seulement s'il existe $u, v \in \mathbb{Z}$ tels que au + bv = 1.

Corollaire 21. $k \in \mathbb{Z}/n\mathbb{Z}$ est inversible si, et seulement si, $k \wedge n = 1$.

Remarque 22: $\varphi(n)$ est donc aussi le nombre d'inversibles de $\mathbb{Z}/n\mathbb{Z}$: autrement dit, c'est l'ordre du groupe $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Corollaire 23 (Petit théorème de Fermat). Si $a \wedge n = 1$, alors

$$a^{\varphi(n)} = 1 \mod(n)$$

En particulier, si p est premier et a n'est pas multiple de p, alors

$$a^{p-1} = 1 \mod(p)$$

Théorème 24 (Restes chinois). Soit $a, b \ge 2$ deux entiers premiers entre eux, alors le morphisme d'anneaux

$$\mathbb{Z}/ab\mathbb{Z} \longrightarrow (\mathbb{Z}/a\mathbb{Z}) \times (\mathbb{Z}/b\mathbb{Z})$$

est un isomorphisme.

En particulier, on a

$$(\mathbb{Z}/ab\mathbb{Z})^{\times} \simeq (\mathbb{Z}/a\mathbb{Z})^{\times} \times (\mathbb{Z}/b\mathbb{Z})^{\times}$$

Corollaire 25. Si a et b sont premiers entre eux, on a

$$\varphi(ab) = \varphi(a)\varphi(b)$$

En particulier, si $n = \prod p_i^{\alpha_i}$ est la décomposition en facteurs premiers de n, alors

$$\varphi(n) = \prod_{i=1}^{m} p_i^{\alpha_i - 1}(p_i - 1) = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i} \right)$$

2.2 Le corps \mathbb{F}_n

Proposition 26. $\mathbb{Z}/n\mathbb{Z}$ est un corps si, et seulement si n est premier. Dans ce cas, on notera \mathbb{F}_n le corps $\mathbb{Z}/p\mathbb{Z}$.

Proposition 27. $(\mathbb{Z}/p\mathbb{Z})^{\times}$ est un groupe cyclique d'ordre p-1.

Automorphisme et groupe multiplicatif

Proposition 29.

$$\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \simeq (\mathbb{Z}/n\mathbb{Z})^{\times}$$

DEVELOPPEMENT 2

Lemme 30. Si $p \ge 3$ est premier et $k \ge 1$, alors

$$(1+p)^{p^k} = 1 + \lambda p^{k+1}$$

 $o\dot{u} \lambda \wedge p = 1$.

Théorème 31. Soit $p \ge 3$ premier et $k \ge 1$, alors

$$(\mathbb{Z}/p^k\mathbb{Z})^{\times} \simeq \mathbb{Z}/(p^{k-1}(p-1))\mathbb{Z}$$

Lemme 32. Soit $k \ge 1$, alors

$$5^{2^k} = 1 + \lambda 2^{k+2}$$

avec k impair.

Théorème 33. Soit $k \geqslant 3$, alors

$$(\mathbb{Z}/2^k\mathbb{Z})^{\times} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{k-2}\mathbb{Z}$$

De plus, on a

$$(\mathbb{Z}/2\mathbb{Z})^{\times} = 1$$
 et $(\mathbb{Z}/4\mathbb{Z})^{\times} \simeq \mathbb{Z}/2\mathbb{Z}$

Corollaire 34. On en déduit en particulier que $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ est cyclique si, et seulement si, $n \in \{2, 4, p^k, 2p^k\}$ avec p premier impair et $k \geqslant 1$.

Quelques applications

Groupes abéliens

Définition 35. Soit G un groupe abélien, un caractère de G est un morphisme de groupes $\chi: G \longrightarrow \mathbb{C}^{\times}$. Le groupe des caractères de G est le dual de G, noté \widehat{G} .

Proposition 36.

$$\widehat{\mathbb{Z}/n\mathbb{Z}} \simeq \mathbb{Z}/n\mathbb{Z}$$

Lemme 37. Soit G un groupe abélien fini et H un sous-groupe de G, alors le morphisme de groupes

$$\rho_H : \chi \in \widehat{G} \longmapsto \chi_{|H} \in \widehat{H}$$

est surjectif.

Théorème 38 (Structure des groupes abéliens finis). Soit G un groupe abélien fini, alors il existe $d_1, ..., d_r \ge 1$ tels que $d_1|...|d_r$ et

$$G \simeq \mathbb{Z}/d_1\mathbb{Z} \times ... \times \mathbb{Z}/d_r\mathbb{Z}$$

De plus, la suite $(d_1, ..., d_r)$ est unique et ne dépend que de la classe d'isomorphisme de G appelée invariants de G.

Exemple 39 : Un groupe d'ordre p^2 est toujours abélien et isomorphe à $\mathbb{Z}/p^2\mathbb{Z}$ ou à $(\mathbb{Z}/p\mathbb{Z})^2$.

Corollaire 40. Si G est un groupe abélien fini, alors $G \simeq \widehat{G}$.

Remarque 41 : Si G n'est pas abélien, alors le résultat précédent n'est plus nécessairement vrai, par exemple les seuls morphismes $\mathfrak{S}_n \longrightarrow \mathbb{C}^*$ sont l'identité et la signature. (Il faut en fait changer la définition de \widehat{G} pour un groupe non abélien).

3.2 Arithmétique

Définition 42 (Chiffrement RSA). Soit p et q deux nombres premiers distincts et n=pq. Soit c et d tels que $cd=1 \mod (\varphi(n))$. Le couple (n,c) est la clé publique et d la clé secrète. La fonction $g:t\in \mathbb{Z}/n\mathbb{Z} \longmapsto t^c$ est appelée fonction de chiffrement et la fonction $f:t\in \mathbb{Z}/n\mathbb{Z} \longmapsto t^d$ est appelée fonction clé de déchiffrement.

Théorème 43. Soit (n,c) une clé publique et d la clé secrète. Alors,

$$f \circ g = \mathrm{Id}_{\mathbb{Z}/n\mathbb{Z}}$$

Interprétation 44 : Il est difficile de calculer d en ne connaissant que la clé publique (n,c). La méthode naïve consiste à factoriser n pour trouver p et q, ce qui est particulièrement difficile aujourd'hui avec p et q qui ont 150 chiffres.

Le chiffrement est public, aux yeux de tous, mais le déchiffrement n'est accessible qu'à la personne qui dispose de la clé de déchiffrement.

Définition 45. Un nombre de Carmichael est un entier n qui n'est pas premier mais tel que $a^{n-1} = \mod(n)$ pour tout entier a.

Remarque 46 : Les nombres de Carmichael sont les nombres qui passent à travers le critère de primalité qu'on pourrait imaginer du petit théorème de Fermat.

Théorème 47. Un entier n est un nombre de Carmichael si, et seulement s'il existe des nombres premiers distincts $p_1, ..., p_k$ tels que $n = p_1...p_k$ tel que $\forall i, p_i - 1 | n - 1$.

Corollaire 48. Un nombre de Carmichael a au moins 3 facteurs premiers.

Exemple 49 : Le plus petit nombre de Carmichael est $561 = 3 \times 11 \times 17$. On sait aussi (mais je ne sais pas le démontrer) qu'il existe une infinité de nombres de Carmichael.

3.3 Critère d'irréductibilité de polynômes

Théorème 50 (Critère d'Eisenstein). Soit $P(X) = a_n X^n + ... + a_0 \in \mathbb{Q}[X]$. On suppose qu'il existe un nombre premier p tel que

- p divise tous les a_i avec $i \leq n-1$.
- p ne divise pas a_n .
- p^2 ne divise pas a_0 .

Alors, P est irréductible dans $\mathbb{Q}[X]$.

Exemple 51 : Soit p un nombre premier, alors $\Phi_p(X) = X^{p-1} + ... + X + 1$ est irréductible dans $\mathbb{Q}[X]$.

Théorème 52. Soit $P = a_n X^n + ... + a_0 \in \mathbb{Z}[X]$ et p un nombre premier tel que $a_n \neq 0 \mod(p)$. Si \overline{P} est irréductible dans \mathbb{F}_p , alors P est irréductible sur \mathbb{Q} .

Application 53: $X^p - X - 1$ est irréductible sur \mathbb{Z} .

Remarque 54 : La réciproque est fausse : $X^4 + 1$ est irréductible sur \mathbb{Z} , mais réductible dans tous les \mathbb{F}_p .

Références:

- Arnaudiès, Fraysse. Algèbre (Tome 1).
- Gourdon, Algèbre.
- Perrin, Cours d'algèbre.
- Risler, Algèbre pour la L3.