15. Loi de réciprocité quadratique

[Rom17, §13.6-7, p429-435]

ÉNONCÉ

THÉORÈME. [LOI DE RÉCIPROCITÉ QUADRATIQUE]

Soient $p \neq q$ des nombres premiers impairs. Alors :

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{(p-1)(q-1)}{4}} \quad \text{où} \quad \left(\frac{x}{p}\right) = \left\{ \begin{array}{cc} 1 & \textit{si } x \textit{ est un carr\'e dans } \mathbb{F}_p^* \\ 0 & \textit{si } x = 0 \\ -1 & \textit{sinon} \end{array} \right.$$

DÉVELOPPEMENT

Soient p et q des entiers premiers impairs. Montrons d'abord le lemme suivant;

LEMME. Pour
$$a\in \mathbb{F}_q^*$$
, on $a\left(rac{a}{q}
ight)=a^{rac{q-1}{2}}$ dans \mathbb{F}_q^* et $|\{x\in \mathbb{F}_q^*\ |\ ax^2=1\}|=1+\left(rac{a}{q}
ight)$.

En effet si $a=b^2$ est un carré, alors nécessairement $a^{\frac{q-1}{2}}=b^{q-1}=\overline{1}=\overline{\left(\frac{a}{q}\right)}.$

Comme on a $\frac{q-1}{2}$ carrés 1 dans \mathbb{F}_p^* et que $X^{\frac{q-1}{2}}-1$ a au plus $\frac{q-1}{2}$ solutions dans F_q^* , on en déduit que si a n'est pas un carré, alors $a^{\frac{q-1}{2}}=\overline{-1}=\overline{\left(\frac{a}{q}\right)}$.

Ensuite, si $a=b^2$ est un carré, alors $ax^2=1 \Longleftrightarrow (bx)^2=1 \Longleftrightarrow x=\pm b^{-1}$ et donc puisque $q\neq 2$, on a bien deux solutions. Sinon, il n'y a pas de solutions puisque le produit d'un carré c par un non carré d est un non carré. En effet $\overline{\left(\frac{cd}{q}\right)}=(cd)^{\frac{q-1}{2}}=c^{\frac{q-1}{2}}d^{\frac{q-1}{2}}=\overline{\left(\frac{c}{q}\right)}\times\overline{\left(\frac{d}{q}\right)}=\overline{1}\times\overline{-1}=\overline{-1}$ et puisque $q\neq 2$, $\overline{\left(\frac{cd}{q}\right)}=-1$.

Soit maintenant $X=\{x=(x_1,\ldots,x_p)\in\mathbb{F}_q^p\mid \sum_{i=1}^p x_i^2=1\}$. On va dénombrer X modulo p de deux manières différentes :

• Considérons d'abord l'action de \mathbb{F}_p sur X définie par $^2\overline{k}.(x_1,\ldots,x_p)=(x_{1+k},\ldots,x_{p+k}).$ Le cardinal de l'orbite d'un élément divise $p=|\mathbb{F}_p|$, donc est égal à 1 ou p. L'orbite de x est réduite à lui-même si et seulement si $x_1=\cdots=x_p$. Le nombre de tels x dans X est le nombre de solutions de $px_1^2=1$, c'est-à-dire $1+\left(\frac{p}{q}\right)$ d'après le Lemme. Ainsi $|X|\equiv 1+\left(\frac{p}{q}\right)\mod p$.

• On a $X = \{x \in \mathbb{F}_q^p \mid f(x) = 1\}$ où f est la forme quadratique associée à Id_p dans la base canonique. Notons $d = \frac{p-1}{2}$.

Soit
$$M=\operatorname{diag}(J,J,\ldots,J,a)$$
 où $J=\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$ est répétée d fois et $a=(-1)^d$.

On a rg(M) = p et $det(M) = a det(J)^d = (-1)^d (-1)^d = 1$. La forme quadratique g associée à M dans la base canonique est donc non dégénérée et par classification des formes quadratiques ³ sur \mathbb{F}_q , on a que f et g sont congruentes.

Soit
$$X' = \{x \in \mathbb{F}_q^p \mid g(x) = 1\} = \{x \in \mathbb{F}_q^p \mid 2 \sum_{k=1}^d x_{2k} x_{2k-1} + a x_p^2 = 1\}.$$
 Alors $|X| = |X'|$ et si $x \in X'$:

- soit pour tout $k \le d$, $x_{2k+1} = 0$ et $ax_p^2 = 1$: on a alors $1 + \left(\frac{a}{q}\right)$ possibilités pour x_p et q^d pour les $(x_{2k})_{1 \le k \le d}$,
- soit il existe un $x_{2k+1} \neq 0$: on choisit $(x_{2k+1})_{1 \leq k \leq d}$ et x_p avec $q(q^d-1)$ possibilités, puis on choisit $(x_{2k})_{1 \leq k \leq d}$ satisfaisant $2\sum_{k=1}^d x_{2k-1}x_{2k} = 1 ax_p^2$, équation d'un hyperplan affine de cardinal q^{d-1} .

Finalement
$$|X| = q^d \left(1 + \left(\frac{a}{q}\right)\right) + q^d (q^d - 1) = q^d \left(\left(\frac{a}{q}\right) + q^d\right).$$

Ainsi par le Lemme :

$$1 + \left(\frac{p}{q}\right) \equiv \left(\frac{q}{p}\right) \left(\left(\frac{(-1)^{\frac{p-1}{2}}}{q}\right) + \left(\frac{q}{p}\right)\right) \mod p$$

$$\iff \left(\frac{q}{p}\right) + \left(\frac{q}{p}\right) \left(\frac{p}{q}\right) \equiv \left(\frac{q}{p}\right) + \left((-1)^{\frac{p-1}{2}}\right)^{\frac{q-1}{2}} \mod p$$

$$\iff \left(\frac{q}{p}\right) \left(\frac{p}{q}\right) \equiv (-1)^{\frac{(p-1)(q-1)}{2}} \mod p$$

On obtient alors le résultat puisque les deux membres de la congruence sont égaux à ± 1 dans $\mathbb Z$ et que $p \neq 2$.

COMMENTAIRES

Il y a pas mal de choses à maitriser sur les formes quadratiques : classification, égalité des cardinaux de X et X', expression de la forme quadratique à partir de sa matrice ...

Il faut savoir ce qu'il se passe dans le cas p=2. La loi de réciprocité quadratique sert notamment à résoudre des équations diophantiennes. Savoir si un élément est un carré dans \mathbb{F}_q permet aussi dans le cas des formes quadratiques, de classifier une forme quadratique (connaissant un déterminant, il suffit de savoir si c'est un carré).

^{1.} $\operatorname{car} \phi : \mathbb{F}_q^* \longrightarrow \mathbb{F}_q^*, a \longmapsto a^2 \text{ est un morphisme de groupes et } |\operatorname{Im}(\phi)| = \left|\mathbb{F}_q^*\right| / |\operatorname{ker}(\phi)| = (q-1)/2$

^{2.} les indices des éléments sont modulo p

^{3.} valable pour un corps de caractéristique différente de 2 : c'est bien le cas ici puisque q>3