41. Intégrale de DIRICHLET

[Far00, §VII.2, p98] [FGN14, §4.27, p214]

ÉNONCÉ

APPLICATION. $\int_0^{+\infty} \frac{\sin(x)}{x} dx = \frac{\pi}{2}.$

DÉVELOPPEMENT

Soit $f: \mathbb{R}_+ \times \mathbb{R}_+ \longrightarrow \mathbb{R}(t,x)$ définie par $f(t,x) = \frac{\sin(x)}{x} e^{-tx}$ si x > 0 et f(t,0) = 1. On pose $F(t) = \int_0^{+\infty} f(t,x) dx$ pour $t \in \mathbb{R}_+$.

Cette application est bien définie sur \mathbb{R}_+^* puisque $|f(t,x)|=O(\mathrm{e}^{-tx})$ est intégrable et f(t,.) est continue sur \mathbb{R}_+ .

Vérifions que l'intégrale de Dirichlet F(0) est semi-convergente. Pour $A \in \mathbb{R}_+$, on a :

$$\int_0^A \frac{\sin(x)}{x} dx = \left[\frac{1 - \cos(x)}{x} \right]_0^A + \int_0^A \frac{1 - \cos(x)}{x^2} dx$$

Lorsque A tend vers $+\infty$, le crochet tend vers 0 et l'intégrale de droite converge puisque le terme sous l'intégrale est un $O(1/x^2)$. Donc F(0) est bien définie.

- Montrons que F est continue et dérivable sur \mathbb{R}_+^* .
 - Appliquons pour cela le théorème de dérivabilité sous le signe intégral, valable puisque :
 - pour t > 0, f(t, .) est bien intégrable comme vu précédemment,
 - pour tout $x \ge 0$, f(.,x) est dérivable, de dérivée $\partial_t f(t,x) = -\sin(x) e^{-tx}$,
 - pour tout $\alpha > 0$, puis pour tout $t > \alpha$, $|\partial_t f(t,x)| \le |\sin(x)| e^{-\alpha x} \le e^{-\alpha x}$ intégrable.

Ainsi F est dérivable sur \mathbb{R}_+^* et pour t > 0:

$$F'(t) = \int_0^{+\infty} \partial_t f(t, x) dx = -\int_0^{+\infty} \sin(x) e^{-tx} dx = -\operatorname{Im}\left(\int_0^{+\infty} e^{(i-t)x} dx\right)$$
$$= -\operatorname{Im}\left(\left[\frac{e^{(i-t)x}}{i-t}\right]_0^{+\infty}\right) = \operatorname{Im}\left(\frac{1}{i-t}\right) = -\frac{1}{1+t^2}$$

- Ainsi $F(t) = -\arctan(t) + C$ pour t > 0 (F est continue sur \mathbb{R}_+^*) où C est une constante à déterminer, en calculant par exemple $\lim_{t \to \infty} F$.
 - Pour cela il suffit d'appliquer le théorème de convergence dominée (puisque $|f(t,x)| \le \mathrm{e}^{-\alpha x}$ pour $t \ge \alpha > 0$) et alors $\lim_{+\infty} F = 0$. D'où $C = \frac{\pi}{2}$.

• Pour conclure il suffit alors de montrer que F est continue en 0, puisqu'alors

$$F(0) = -\arctan(0) + \frac{\pi}{2} = \frac{\pi}{2}$$

Soit $t \in \mathbb{R}_+$ et A > 0. On a :

$$|F(t) - F(0)| = \left| F(t) \pm \int_0^A f(t, x) dx \pm \int_0^A f(0, x) dx - F(0) \right|$$

$$\leq \left| \int_A^{+\infty} e^{-tx} \frac{\sin(x)}{x} dx \right| + \left| \int_0^A (e^{-tx} - 1) \frac{\sin(x)}{x} dx \right| + \left| \int_A^{+\infty} \frac{\sin(x)}{x} dx \right|$$

Majorons $\left|\int_A^{+\infty} \mathrm{e}^{-tx} \, \frac{\sin(x)}{x} dx \right|$. Pour B>A, on a :

$$\int_{A}^{B} e^{-tx} \frac{\sin(x)}{x} dx = \operatorname{Im} \left(\int_{A}^{B} \frac{e^{(i-t)x}}{x} dx \right) = \operatorname{Im} \left(\left[\frac{e^{(i-t)x}}{(i-t)x} \right]_{A}^{B} + \int_{A}^{B} \frac{e^{(i-t)x}}{(i-t)x^{2}} dx \right)$$

$$= \operatorname{Im} \left(\frac{e^{(i-t)B}}{(i-t)B} - \frac{e^{(i-t)A}}{(i-t)A} + \int_{A}^{B} \frac{e^{(i-t)x}}{(i-t)x^{2}} dx \right)$$

En passant à la limite en $B \to +\infty$, on obtient :

$$\left| \int_{A}^{+\infty} e^{-tx} \frac{\sin(x)}{x} dx \right| \le \left| \operatorname{Im} \left(-\frac{e^{(i-t)A}}{(i-t)A} + \int_{A}^{+\infty} \frac{e^{ix-tx}}{(i-t)x^2} dx \right) \right|$$
$$\le \frac{1}{|i-t|A} + \frac{1}{|i-t|} \int_{A}^{+\infty} \frac{1}{x^2} dx \le \frac{2}{A}$$

Fixons $\varepsilon>0$ et choisissons A tel que $\frac{2}{A}\leq \frac{\varepsilon}{3}$ et $\left|\int_A^{+\infty} \frac{\sin(x)}{x} dx\right|\leq \frac{\varepsilon}{3}$. Alors pour $t\in\mathbb{R}_+$:

$$|F(t) - F(0)| \le \frac{2\varepsilon}{3} + \left| \int_0^A (e^{-tx} - 1) \frac{\sin(x)}{x} dx \right|$$

Cette dernière intégrale tend vers 0 lorsque t tend vers 0 par convergence dominée. Donc $|F(t)-F(0)|\leq \varepsilon$ pour t assez petit.

Ainsi F est continue en 0, ce qui permet de conclure que $\int_0^{+\infty} \frac{\sin(x)}{x} dx = \frac{\pi}{2}$.