EXEMPLES D'ÉTUDES ET D'APPLICATIONS DE FONCTIONS USUELLES ET SPÉCIALES.

Utilisation des fonctions usuelles

[RD098, §4.4, p126]

Autour de l'exponentielle

[Rud98, Prologue, p1-4] [AF93, §VI.7, p226]

DÉFINITION 1. [EXPONENTIELLE, COSINUS ET SINUS]

On définit les séries entières suivantes :

$$\exp(z) = e^z = \sum_{n \in \mathbb{N}} \frac{z^n}{n!} \quad \cos(z) = \sum_{n \in \mathbb{N}} \frac{(-1)^n z^{2n}}{(2n)!} \quad \sin(z) = \sum_{n \in \mathbb{N}} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$

PROPOSITION 2.

- (i) exp, sin, cos sont des séries entières de rayon de convergence infini et sont donc définies et holomorphes sur \mathbb{C} . De plus \exp est sa propre dérivée,
- (ii) Pour tout $z \in \mathbb{C}$, on $a \exp(iz) = \cos(z) + i \sin(z)$,
- (iii) Pour $\theta \in \mathbb{R}$, $\cos(\theta)$ et $\sin(\theta)$ sont réels et $|e^{i\theta}| = 1$.
- (iv) exp est un morphisme surjectif de $(\mathbb{C},+)$ dans (\mathbb{C}^*,\times) de noyau $ia\mathbb{Z}$ pour un $a\in\mathbb{R}_+$.
- (v) Pour $z_1, z_2 \in \mathbb{C}$, $\exp(z_1 + z_2) = \exp(z_1) \exp(z_2)$,

REMARQUE 3. On note alors $\mathcal{E}: \mathbb{R} \longrightarrow \mathbb{C}^*, t \longmapsto e^{it}$ et $\pi = a/2$ (ainsi $e^{i\pi} + 1 = 0$). Cette application associe à un angle t l'unique point u de module 1 dont l'angle entre [Ox)et [Ou) est t.

COROLLAIRE 4. [FORMULE DE MOIVRE ET D'EULER]

- Pour $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$, on a $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$. Pour $\theta \in \mathbb{R}$, on a $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$ et $\sin(\theta) = \frac{e^{i\theta} e^{-i\theta}}{2i}$.

APPLICATION 5. Développement de $\cos(n\theta)$ et $\sin(n\theta)$ par la formule de MOIVRE. Linéarisation de $\cos^n(\theta)$ et $\sin^n(\theta)$ par les formules d'EULER. Exemples de $\cos^5(\theta)$ et $\sin(5\theta)$.

APPLICATION 6. Polynômes de TCHEBYCHEV.

APPLICATION 7. Calcul des noyaux de DIRICHLET et FEJÉR:

$$D_N = \sum_{n=-N}^{N} e^{in.} = \frac{\sin\left(\frac{2N+1}{2}.\right)}{\sin(./2)} \quad \text{et} \quad K_N = \frac{1}{N} \sum_{n=0}^{N-1} D_n = \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N}\right) e_n = \frac{\sin^2(N./2)}{\sin^2(./2)}$$

Fonctions usuelles et calculs d'intégrales

Calculs de primitives de fractions rationnelles : on se ramène par développements en éléments simples à certains types de primitives à calculer : apparait le \ln et \arctan

Fractions rationnelles en cos, sin : règles de BIOCHE, on se ramène par changement de variables à une fraction rationnelle,

Dérivées des fonctions trigonométriques, hyperboliques, de leurs inverses

Calcul de l'intégrale de DIRICHLET

Intégrales de WALLIS

Intégrales d'une gaussienne

La fonction Γ d'EULER

[QZ13, §IX.II.1, p312] [GS09, §2.1, p101]

II. A. Généralités

[BMP05, §2.7, p82] [QZ13, §IX.II.1, p312]

Définition, relation de récurrence, calcul de $\Gamma(1)$, $\Gamma(1/2)$

PROPOSITION 8. Γ est holomorphe sur $\{\Re(z) > 0\}$.

APPLICATION 9. Γ admet un unique prolongement méromorphe sur \mathbb{C} , holomorphe sur

Application 10.
$$\forall x \in \mathbb{R}_+^*, \Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{x(x+1) \dots (x+n)}$$
 [formule de Gauss]

Prolongement holomorphe, formule de CAUCHY ln-convexité de Γ.

II. B. Applications

Formule de STIRLING Polynômes orthogonaux

II. C. Applications en probabilités

Loi Γ , β , stabilité par somme, ..., lien avec la loi exponentielle. Exemples de modélisations

III. Transformée de Fourier

III. A. Généralités

Applications

Résolution de l'équation de la chaleur, de SCHRÖDINGER

III. C. Applications en probabilités

[Ouv09, §12.2, p197]

On admet que $\phi_{\mathcal{N}(0,\sigma^2)}: \zeta \longmapsto \mathrm{e}^{-\frac{\sigma^2\zeta^2}{2}}.$

PROPOSITION 11. ϕ_X caractérise \mathbb{P}_X .

APPLICATION 12. [LOI MULTINOMIALE POISSONNIFIÉE]

Soient $(p_j)_{1 \leq j \leq d}$ des réels positifs tels que $\sum_{1 \leq j \leq d} p_j = 1$. Soient $(Y^k)_{k \geq 1}$ des variables aléatoires indépendantes et identiquement distribuées telles que $\mathbb{P}(Y^k = j) = p_j$. Soit N indépendante des $(Y^k)_{k \geq 1}$ de loi $\mathcal{P}(\lambda)$ pour un $\lambda > 0$.

En posant $X^k = (\mathbb{1}_{Y^k=1}, \dots, \mathbb{1}_{Y^k=d})$, la loi de $S = \sum_{k=1}^N X^k$ est $\mathcal{P}(\lambda p_1) \otimes \dots \otimes \mathcal{P}(\lambda p_d)$.

Convergence en loi, théorème de Lévy, théorème central limite, intervalles de confiance

QUESTIONS

- Q Calculer $I=\int_0^1 \log(\frac{\sin(\pi x)}{\pi x}) dx$ de deux manières différentes pour retrouver la formule de STIRLING.
- R On a $I=\int_0^1 \log(\sin(\pi x))dx-\int_0^1 \log(\pi x)dx$. La première intégrale se calcule par exemple en utilisant l'arc moitié.

BIBLIOGRAPHIE

[AF93] J.M. ARNAUDIÈS et H. FRAYSSE : Cours de mathématiques, Tome 1, Algèbre. Dunod, 1993.

[BMP05] V. BECK, J. MALICK et G. PEYRÉ: Objectif Agrégation. H&K, 2ème édition, 2005.

[GS09] S. GROUX et P. SOULAT: Les fonctions spéciales vues par les problèmes. Cépaduès, 2009.

[Ouv09] J.-Y. Ouvrard: Probabilités: Tome 2. Cassini, 3ème édition, 2009.

[QZ13] H. QUEFFÉLEC et C. ZUILY: Analyse pour l'agrégation. Dunod, 4ème édition, 2013.

[RDO98] E. RAMIS, C. DESCHAMPS et J. ODOUX: Cours de mathématiques 3, Topologie et éléments d'analyse. Dunod, 1998.

[Rud98] W. RUDIN: Analyse réelle et complexe. Dunod, 2ème édition, 1998.