Définition d'une équation diophantienne

Équations diophantiennes linéaires

[Rom17, §10.4, p288]

Cas de l'équation ax = b

Soient $n, m \ge 2$.

PGCD d'une famille d'éléments, algorithme d'EUCLIDE, théorème de BACHET-BÉZOUT Lemmes d'EUCLIDE, de GAUSS sur la divisibilité d'un produit Équation ax + ny = c, réécrite $ax \equiv c \mod n$: ensemble des solutions, existence ssi $a \wedge n \mid b$, dans ce cas une solution particulière est donnée par l'identité de Bézout, exemples

THÉORÈME 1. Soit $a \in \mathbb{N}^*$, $b \in \mathbb{Z}$. On note $\delta = a \wedge n$ et on écrit $a = \delta a'$ et $n = \delta n'$. L'équation $ax \equiv b \mod n$ a des solutions entières si et seulement si $\delta \mid b$ et dans ce cas, si $b = \delta b'$, les solutions sont les $b'x'_0 + kn'$ avec $k \in \mathbb{Z}$ et x'_0 est une solution particulière de $a'x \equiv 1 \mod n'$.

Généralisation à $\sum a_i x_i = b$: calcul par récurrence d'une solution Équivalent du nombre de solutions S_n de $\sum \alpha_i n_i = n$

[Gou08, §4.4, p249]

Systèmes de congruence

[Rom17, §10.3-4, p283-290]

THÉORÈME 2. [THÉORÈME DES RESTES CHINOIS]

Soient $n_1, \ldots, n_r \in \mathbb{N}$ des entiers distincts. Ces entiers sont premiers entre eux si et seulement si $\mathbb{Z}/n\mathbb{Z}$ et $\prod_{j=1}^r \mathbb{Z}/n_j\mathbb{Z}$ sont isomorphes, où $n=\prod_{j=1}^r n_j$. Plus précisément, l'application $\phi: \overline{k}_n \longmapsto (\overline{k}^{n_i})_{1 \le i \le r}$ est un isomorphisme d'anneaux.

EXEMPLE 3. $\mathbb{Z}/4\mathbb{Z}$ n'est pas isomorphe à $(\mathbb{Z}/2\mathbb{Z})^2$.

THÉORÈME 4. L'isomorphisme inverse est donné par $(\overline{k_i}^{n_i})_{1 \leq i \leq r} \longmapsto \overline{\sum_{j=1}^r k_j u_j \frac{n}{n_j}}^n$ où l'on a choisit $(u_j)_{1 \le j \le r}$ tels que $\sum_{j=1}^r u_j \frac{n}{n_j} = 1$.

Soient $n, m \geq 2$.

APPLICATION 5. Soit $a,b\in\mathbb{Z}$ et (\mathscr{S}) le système d'équations $\left\{\begin{array}{c}x\equiv a\mod n\\x\equiv b\mod m\end{array}\right.$ d'inconnue $x \in \mathbb{Z}$. Si $n \wedge m = 1$, alors

- on cherche une relation de Bézout un + vm = 1 avec $u, v \in \mathbb{Z}$.
- on a alors une solution particulière de \mathscr{S} : $x_0 = unb + vma$,
- les solutions de \mathscr{S} sont les $(x_0 + knm)_{k \in \mathbb{Z}}$.

[Com98, §12.7, p273] **EXEMPLE 6.** Les solutions de $\begin{cases} x \equiv 2 \mod 3 \\ x \equiv 4 \mod 5 \end{cases}$ sont les $(14 + 15k)_{k \in \mathbb{Z}}$.

Nombres premiers et équations diophantiennes

Théorème de DIRICHLET (faible): existence d'un nombre infini de nombres premiers d'une certaine forme

III. A. Réduction

[Rom17, §13.6-7, p429-436] [Per96, §3.2, p72-76]

Soit $p \in \mathcal{P}$. On peut regarder l'équation modulo p.

S'il n'y a pas de solution dans $\mathbb{Z}/p\mathbb{Z}$, il n'y en a pas non plus sur \mathbb{Z} .

Soit $p \in \mathcal{P}$. On note \mathbb{F}_p le corps $\mathbb{Z}/p\mathbb{Z}$, puis $\mathbb{F}_p^2 = \{x^2 \mid x \in \mathbb{F}_p\}$ et $\mathbb{F}_p^* = \mathbb{F}_p^2 \cap \mathbb{F}_p^*$.

PROPOSITION 7. Si p=2, alors $\mathbb{F}_p^2=\mathbb{F}_p$. Sinon, on a $|\mathbb{F}_p^2|=rac{p+1}{2}$.

On suppose dans la suite p impair.

LEMME 8. On a $x \in \mathbb{F}_n^{*2} \iff x^{\frac{p-1}{2}} = 1$.

EXEMPLE 9. Dans $\mathbb{Z}/7\mathbb{Z}$, 2 est un carré mais par 3.

On aimerait savoir rapidement si un entier a donné est un carré modulo p, donc savoir si $x^2 \equiv a$ $\mod p$ admet ou non une solution entière.

DÉFINITION 10. [SYMBOLE DE LEGENDRE]

Soit $a \in \mathbb{Z}$, on appelle symbole de LEGENDRE (de a modulo p) l'entier :

$$\left(\frac{a}{p}\right) = \left\{ \begin{array}{rr} 1 & \text{si } x^2 \equiv a \mod p \text{ est r\'esoluble et } p \nmid a \\ 0 & \text{si } p \mid a \\ -1 & \text{sinon} \end{array} \right.$$

PROPOSITION 11. On $a\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p$ pour tout $a \in \mathbb{Z}$.

EXEMPLE 12. -1 est un carré modulo p si et seulement si $p \equiv 1 \mod 4$. Donc $x^2 + 1 = p$ n'a pas de solution pour $p \equiv 3 \mod 4$.

PROPOSITION 13. $\left(\frac{a}{p}\right) = \left(\frac{a+kp}{p}\right)$ pour tout $a,k \in \mathbb{Z}$. On peut donc définir $\overline{x} \in \mathbb{F}_p \longmapsto \left(\frac{x}{p}\right)$. C'est l'unique morphisme de groupes non trivial de (\mathbb{F}_p^*,\times) vers $(\{\pm 1\},\times)$.

APPLICATION 14. Pour $a \in \mathbb{Z}$, le nombre de solutions de $x^2 = \overline{a}$ dans \mathbb{F}_p est $1 + \left(\frac{a}{p}\right)$.

APPLICATION 15. Pour $a, b \in \mathbb{F}_p^*$ et $c \in \mathbb{F}_p$, $ax^2 + by^2 = c$ admet des solutions dans \mathbb{F}_p .

Exemple: $x^2 + y^2 = pz^2$ selon $p \mod 4$

[Com98, §12.7, p275]

THÉORÈME 16. [LOI DE RÉCIPROCITÉ QUADRATIQUE]

Soient $p \neq q$ des nombres premiers impairs. Alors $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$.

PROPOSITION 17. Pour p premier impair, on a $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$. Ainsi 2 est un carré modulo p si et seulement si $p \equiv \pm 1 \mod 8$.

On peut donc calculer $\left(\frac{n}{p}\right)$ pour tout entier n.

EXEMPLE 18. $\left(\frac{26}{307}\right) = \left(\frac{2}{307}\right)\left(\frac{13}{307}\right) = -(-1)^{\frac{13-1}{2}\frac{307-1}{2}}\left(\frac{307}{13}\right) = -\left(\frac{8}{13}\right) = -\left(\frac{2}{13}\right)\left(\frac{4}{13}\right) = -1$ Ainsi 26 n'est pas un carré modulo 307.

 $x^2+py=r$ avec p premier impair er $p\nmid r$, alors on a une solution si et seulement si $\left(\frac{q}{p}\right)=1$ et dans ce cas on a une paramétrisation de l'ensemble des solutions

IV. Équations diophantiennes non linéaires

IV. A. Exemples de résolutions

[Com98, §12.7, p273] [FGN07, §4.39, p167]

Solutions de $x^2+y^2=z^2$

Méthode de descente infinie, exemple de $x^4+y^4=z^2$ ou z^4

Autre exemple [FGN07, §4.38, p165]

THÉORÈME 19. [THÉORÈME DE SOPHIE GERMAIN]

Soit p un nombre premier impair tel que q=2p+1 est premier. Alors il n'existe pas de triplet $(x,y,z)\in\mathbb{Z}^3$ tel que $p\nmid xyz$ et $x^p+y^p+q^p=0$.

Théorème de FERMAT

IV. B. L'anneau des entiers de GAUSS

[Per96, §2.3, p50] [Rom17, §9.4.3, p263]

DÉFINITION 20. On note $\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}$ l'ensemble des entiers de Gauss.

PROPOSITION 21. Muni du stathme $N(a+ib)=a^2+b^2$, $\mathbb{Z}[i]$ est euclidien.

PROPOSITION 22. $\mathbb{Z}[i]^{\times} = N^{-1}(\{1\}) = \{\pm 1, \pm i\}.$

On définit $\Sigma = \{n \in \mathbb{N} \mid \exists a, b \in \mathbb{N} \mid n = a^2 + b^2\}$. On cherche à quelle(s) condition(s) $n \in \Sigma$.

EXEMPLE 23. $0, 1, 2, 4, 5, 8, 9, 10 \in \Sigma$ mais pas 3, 6, 7, 11.

LEMME 24. Σ est stable par produit.

LEMME 25. Si $p \in \mathcal{P}$, alors $p \in \Sigma \iff p \equiv 1, 2 \mod 4$.

THÉORÈME 26. [THÉORÈME DES DEUX CARRÉS DE FERMAT]

 $n \in \Sigma$ si et seulement si pour tout $p \in \mathcal{P}$ tel que $p \mid n$ et $p \mid 3 \mod 4$, alors $2 \mid v_p(n)$.

PROPOSITION 27. Les irréductibles de $\mathbb{Z}[i]$ sont :

- $les p \in \mathcal{P}$ tels que $p \equiv 3 \mod 4$,
- les a + ib tels que $a^2 + b^2 \in \mathcal{P}$.

Généralisation: anneaux quadratiques

[Duv07, Ch5, p47]

Ou encore théorème des quatre carrés de LAGRANGE : tout nombre entier est somme de 4 carrés. [Duv07, §6.6, p73] [FGN07, §4.36, p162]

QUESTIONS

- Q On s'intéresse à $y^2=x^3-x$ et au nombre de points de cette courbe sur \mathbb{F}_p . On note N_p le nombre de solutions. Montrer que $N_p=p+\sum_{x\in\mathbb{F}_p}\left(\frac{x^3-x}{p}\right)$. Calculer N_7 . Montrer en fait que pour $p\equiv 3\mod 4$, on a $N_p=p$.
- R On utilise le fait que $\operatorname{card}(\left\{y^2=a\,|\,y\in\mathbb{F}_p\right\})=1+\left(\frac{a}{p}\right)$. On a :

$$N_p = \sum_x \operatorname{card}(\{y^2 = x^3 - x\} \mid y \in \mathbb{F}_p) = \sum_x 1 + \left(\frac{x^3 - x}{p}\right) = p + \sum_{x \in \mathbb{F}_p} \left(\frac{x^3 - x}{p}\right)$$

Pour calculer N_7 , on calcule les $\left(\frac{x^3-x}{7}\right)$ pour $x \in \mathbb{F}_7$, on obtient dans l'ordre pour $x = 0, \ldots, 6: 0, 1, -1, -1, 1, 1, -1, d'$ où $N_7 = 7$.

Si $p \equiv 3 \mod 4$, on a pour f impaire : $\left(\frac{f(-x)}{p}\right) = \left(\frac{-f(x)}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{f}{p}\right) = -\left(\frac{f(x)}{p}\right)$ ce qui assure que la somme est nulle dans la formule de N_p , et ainsi $N_p = p$.

- Q Que dire de $f: x \longrightarrow \frac{1+x}{1-x}$ pour $x \in \mathbb{F}_p \setminus \{1\}$.
- R L'application est-elle injective? si f(x)=f(y), on a (1+x)(1-y)=(1-x)(1+y) donc 2x=2y puis x=y si $p\geq 3$. Supposons $p\geq 3$. L'application est injective et son image est \mathbb{F}_p privée d'un point : -1 puisque 1+x=x-1 n'a pas de solution.
- Q En déduire le nombre de solutions de $x^2 + y^2 = 1$?
- R Écrivons $x^2 = 1 y^2 = \frac{1+y}{1-y}(1-y)^2$. Donc :

$$N_p = p + \sum_y \left(\frac{1 - y^2}{p} \right) = p + 0 + \sum_{y \neq 1} \left(\frac{\frac{1 + y}{1 - y}}{p} \right) = p + \sum_{z \neq -1} \left(\frac{z}{p} \right) = p - \left(\frac{-1}{p} \right)$$

BIBLIOGRAPHIE

- [Com98] F. COMBES: Algèbre et géométrie. Bréal, 1998.
- [Duv07] D. Duverney: Théorie des nombres. Dunod, 2007.
- [FGN07] S. FRANCINOU, H. GIANELLA et S. NICOLAS: Oraux X-ENS Algèbre 1. Cassini, 2007.
- [Gou08] X. GOURDON: Les maths en tête Analyse. Ellipses, 2ème édition, 2008.
- [Per96] D. PERRIN: Cours d'algèbre. Ellipses, 1996.
- [Rom17] J.-E. Rombaldi: *Mathématiques pour l'agrégation : Algèbre et géométrie*. De Boeck, 2017.