Inégalité de Hadamard et déterminant de Gram

Florian DUSSAP

Agrégation 2018

Théorème 1 (inégalité de Hadamard). Soit $M \in \mathcal{M}_n(\mathbb{C})$ et soient X_1, \ldots, X_n les colonnes de M. Alors:

$$|\det M| \leqslant ||X_1|| \cdots ||X_n||$$

où $||X|| = \sqrt{X^*X}$. De plus, il y a égalité ssi les (X_i) sont orthogonaux.

Démonstration. Si det M=0, il n'y a rien à faire. Sinon, les X_1, \ldots, X_n forment une base de \mathbb{C}^n . Par Gram-Schmidt, il existe Y_1, \ldots, Y_n une base orthogonale de \mathbb{C}^n telle que :

$$\forall k, Y_k = X_k + \lambda_{1,k} Y_1 + \dots + \lambda_{k-1,k} Y_{k-1} \qquad \lambda_{i,k} \in \mathbb{C}$$

Posons N la matrice dont les colonnes sont les Y_1, \ldots, Y_n . Puisqu'on ne change pas le déterminant d'une matrice lorsque que l'on retranche à une colonne une combinaison linéaire des autres colonnes, les matrices M et N ont le même déterminant.

Les (Y_k) sont orthogonaux, donc la matrice N^*N s'écrit :

$$N^* N = \begin{pmatrix} & Y_i^* Y_j & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & &$$

Ainsi, $\det(N^*N) = |\det N|^2 = ||Y_1||^2 \cdots ||Y_n||^2$, donc $|\det N| = ||Y_1|| \cdots ||Y_n||$. Par ailleurs, par orthogonalité des (Y_i) :

$$(*) ||X_k||^2 = ||Y_k||^2 + |\lambda_{1,k}|^2 ||Y_1||^2 + \dots + |\lambda_{k-1,k}|^2 ||Y_{k-1}||^2$$

Donc $||Y_k|| \le ||X_k||$ pour tout k. Finalement :

$$(**)$$
 $|\det M| = |\det N| = ||Y_1|| \cdots ||Y_n|| \le ||X_1|| \cdots ||X_n||$

ce qui établit l'inégalité.

Déterminons les cas d'égalité. Si les (X_k) sont orthogonaux, alors pour tout k, $X_k = Y_k$ et l'inégalité est une égalité. Réciproquement, supposons qu'on ait l'égalité. Comme $\det M \neq 0$, alors on a $X_k \neq 0$ pour tout k. L'égalité dans (**) impose que $\|X_1\| \cdots \|X_n\| = \|Y_1\| \cdots \|Y_n\| \neq 0$. Puisque $\|Y_k\| \leq \|X_k\|$, on a $\|X_k\| = \|Y_k\|$ pour tout k. Ainsi dans (*), les $\lambda_{j,k}$ doivent être nuls. Donc $X_k = Y_k$ pour tout k et les X_1, \ldots, X_n sont orthogonaux.

Définition. Soit E pré-hilbertien et soient $x_1, ..., x_n$ des vecteurs de E. On appelle matrice de Gram associée aux vecteurs $x_1, ..., x_n$ la matrice :

$$\left(\quad \langle x_i \mid x_j \rangle \quad \right)$$

On appelle déterminant de Gram des vecteurs $x_1, ..., x_n$ le déterminant de cette matrice. On le note $G(x_1, ..., x_n)$.

Théorème 2. Soit V un s.e.v. de E de dimension fini $n \in \mathbb{N}^*$ et soit $(e_1, ..., e_n)$ une base de V. Soit $x \in E$ et soit $d = \operatorname{dist}(x, V)$. Alors:

$$d^2 = \frac{G(e_1, \dots, e_n, x)}{G(e_1, \dots, e_n)}$$

Démonstration. Soit y le projeté orthogonal de x sur V et soit z = x - y. Alors $d^2 = ||z||^2$ et par Pythagore $||x||^2 = ||y||^2 + ||z||^2$. De plus, $\langle x | e_i \rangle = \langle y | e_i \rangle$ pour tout j.

$$G(e_{1},...,e_{n},x) = \begin{pmatrix} \langle e_{i} | e_{j} \rangle & \langle e_{i} | x \rangle \\ \hline \langle x | e_{j} \rangle & \|x\|^{2} \end{pmatrix}$$

$$= \begin{pmatrix} \langle e_{i} | e_{j} \rangle & \langle e_{i} | y \rangle \\ \hline \langle y | e_{j} \rangle & \|y\|^{2} \end{pmatrix} + \begin{pmatrix} \langle e_{i} | e_{j} \rangle & 0 \\ \hline 0 & \|z\|^{2} \end{pmatrix}$$

$$= G(e_{1},...,e_{n},y) + \|z\|^{2} G(e_{1},...,e_{n})$$

Comme $y \in V$, $G(e_1, ..., e_n, y) = 0$ donc $G(e_1, ..., e_n, x) = d^2 G(e_1, ..., e_n)$.

Référence

— GOURDON, Les maths en tête, algèbre.