Leçon 229 : Fonctions monotones. Fonctions Théorème 8. Soit $f: a, b \to \mathbb{R}$ dérivable. Alors f est croissante ssi $f' \ge 0$, convexes. Exemples et applications.

1 Fonctions monotones

Définition 1. Soit I un intervalle de **R** et soit $f: I \to \mathbf{R}$. On dit que f est croissante si pour tous $x, y \in I$, $x < y \Rightarrow f(x) \leqslant f(y)$. On dit qu'elle est strictement croissante si l'inégalité est stricte. On dit qu'elle est (strictement) décroissante si -f est (strictement) croissante. On dit qu'elle est monotone si elle est croissante ou décroissante.

Proposition 2. Une application monotone est injective ssi elle est strictement monotone.

Application 3. Spot $f: I \to \mathbb{R}$ monotone telle que $f(I) \subseteq I$ et soit (u_n) suite définie par récurrence $u_{n+1} = f(u_n)$ et $u_0 \in I$.

- 1. Si f est croissante, alors (u_n) est monotone et son sens de monotonie est déterminé par le signe de $u_1 - u_0$.
- 2. Si f est décroissante, alors $f \circ f$ est croissante et les suites (u_{2k}) et (u_{2k+1}) sont monotones.

Théorème 4. *Soit* $f:]a, b[\rightarrow \mathbf{R}$ *monotone. Alors* f *admet une limite (dans* $\overline{\mathbf{R}}$) à gauche en tout point de [a, b] et une limite à droite en tout point de |a,b|. De plus, pour tout $x \in |a,b|$, $f(x^-) \leq f(x^+)$.

Théorème 5. L'ensemble des points de discontinuité d'une fonction monotone est au plus dénombrable.

Proposition 6. Soit $f: I \to \mathbb{R}$ monotone. Alors f est continue sur I ssi f(I)est un intervalle.

Corollaire 7. Soit $f: I \to \mathbf{R}$ strictement monotone et continue. Alors J =f(I) est un intervalle et f induit un homéomorphisme de I sur J.

et f est décroissante ssi $f' \leq 0$.

Application 9. Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ continue, positive et décroissante. Alors $\sum_{k=0}^{n} f(k) - \int_{0}^{n} f(t) dt$ est décroissante et converge dans \mathbf{R}_{+} . En particulier, la série $\sum_{n \in \mathbb{N}} f(n)$ et $\int_0^{+\infty} f(t) dt$ ont même nature.

Exemple 10. La série $\sum_{n \in \mathbb{N}^*} \frac{1}{n}$ et l'intégrale $\int_1^{+\infty} \frac{1}{t} dt$ ont même nature (divergente) et $H_n - \log(n) \rightarrow \gamma$ où γ est la constante d'Euler.

Fonctions convexes

Définition 11. Soit $C \subseteq \mathbb{R}^d$. On dit que C est convexe si pour tous $x, y \in C$, pour tout $\lambda \in [0,1]$, $\lambda x + (1 - \lambda) \gamma \in C$.

Définition 12. Soit $C \subseteq \mathbb{R}^d$ un convexe et soit $f: C \to \mathbb{R}^d$. On dit que f est convexe si pour tous $x, y \in C$, pour tout $\lambda \in [0,1]$, $f(\lambda x + (1 - \lambda y)) \le$ $\lambda f(x) + (1 - \lambda) f(y)$. On dit que f est strictement convexe si l'inégalité est stricte lorsque $x \neq y$ et $\lambda \in [0, 1]$.

Proposition 13. Soit I un intervalle de **R**. Alors $f: I \to \mathbf{R}$ est convexe ssi pour tout $x_0 \in I$, l'application pente p_{x_0} :

$$\begin{array}{ccc} p_{x_0} & I \setminus \{x_0\} & \longrightarrow & \mathbf{R} \\ & x & \longmapsto & \frac{f(x) - f(x_0)}{x - x_0} \end{array}$$

est croissante.

Corollaire 14 (inégalité des trois pentes). *Soit* $f: I \to \mathbf{R}$ *convexe et soient* $a < b < c \in I$. Alors:

$$\frac{f(b) - f(a)}{b - a} \leqslant \frac{f(c) - f(a)}{c - a} \leqslant \frac{f(c) - f(b)}{c - b}$$

Proposition 15. Soit $f: I \to \mathbf{R}$ convexe. Alors f admet en tout point de $\mathring{\mathbf{I}}$ une dérivée à gauche et à droite. Elle est donc continue en tout point de $\mathring{\mathbf{I}}$ et de plus, f'_g et f'_d sont croissantes et vérifient $f'_g \leq f'_d$.

Théorème 16. *Soit* $f: I \rightarrow \mathbf{R}$ *dérivable. Les assertions suivantes sont équivalentes :*

- 1. f est convexe.
- 2. La courbe représentative de f est au-dessus des tangentes.
- 3. f' est croissante.
- 4. En supposant f deux fois dérivables, $f'' \ge 0$.

Application 17 (quelques inégalités).

- 1. $\forall x_1, \dots, x_n$ positifs, $(x_1 \cdots x_n)^{\frac{1}{n}} \leqslant \frac{x_1 + \dots + x_n}{n}$.
- 2. $\forall a, b$ positifs et $p, q \in]1, +\infty[$ tels que $\frac{1}{p} + \frac{1}{q} = 1$, on a $ab \leq \frac{a^p}{p} + \frac{a^q}{q}$.
- 3. Si $f \in L^p$ et $g \in L^q$ avec p, q comme précédemment, alors $fg \in L^1$ et $||fg||_1 \le ||f||_p ||g||_q$.
- 4. Si $f, g \in L^p$, alors $||f + g||_p \le ||f||_p + ||g||_p$.

Théorème 18. Soit U un ouvert convexe de \mathbb{R}^d et soit $f: U \to \mathbb{R}$. Les assertions suivantes sont équivalentes.

- 1. f est convexe.
- 2. $\forall x, y \in U, f(y) f(x) \ge df(x).(y x).$
- 3. $\forall x, y \in U, (df(y) df(x)).(y x) \ge 0.$
- 4. En supposant f deux fois différentiable, $d^2 f(x)$ est positive pour tout $x \in U$.

Application 19 (méthode de Newton). Soit $f : [a, b] \to \mathbb{R}$ \mathbb{C}^2 strictement croissante telle que f(a) < 0 et f(b) > 0. Notons x^* l'unique zéro de f sur [a, b]. On considère la suite (x_n) définie par récurrence :

$$x_{n+1} = F(x_n), \quad F(x) = x - \frac{f(x)}{f'(x)}$$

- 1. Il existe un intervalle $I = [x^* \delta, x^* + \delta]$ stable par F tel que pour tout $x_0 \in I$, la suite (x_n) a une convergence d'ordre 2 vers x^* .
- 2. On suppose que f'' > 0, alors la suite (x_n) converge pour tout $x_0 \in I$. La convergence est d'ordre 2 et la suite est décroissante à partir d'un certain rang. De plus, on a l'équivalent lorsque $n \to +\infty$:

$$x_{n+1} - x^* \sim \frac{1}{2} \frac{f''(x^*)}{f'(x^*)} (x_n - a)^2$$

3 Optimisation

Théorème 20. Soit C un convexe de \mathbf{R}^d et soit $f: C \to \mathbf{R}$ strictement convexe. Alors f admet au plus un minimum global sur C.

Définition 21. On dit que $f : \mathbb{R}^d \to \mathbb{R}$ est coercive si $|f(x)| \to +\infty$ lorsque $||x|| \to +\infty$.

Théorème 22. Si $f : \mathbb{R}^d \to \mathbb{R}$ est strictement convexe et coercive, alors f admet un unique minimum global.

Application 23 (algorithme du gradient à pas optimal). Soit $f : \mathbb{R}^n \to \mathbb{R}$ de classe \mathbb{C}^1 telle que $\exists \alpha > 0, \forall u, v \in \mathbb{R}^n$,

$$\langle \nabla f(v) - \nabla f(u) \mid v - u \rangle \geqslant \alpha \|v - u\|^2$$

- 1. L'application f admet un unique minimum global sur \mathbb{R}^n , noté a.
- 2. Soit $u \in \mathbf{R}^n$ et soit $\varphi_u : t \mapsto f(u + t\nabla f(u))$. Si $u \neq a$, alors φ_u admet un unique minimum global sur \mathbf{R} .

On définit alors (u_k) suite de \mathbf{R}^n par $u_{k+1} = u_k$ si $u_k = a$ et $u_{k+1} = u_k + t_k \nabla f(u_k)$ où t_k réalise le minimum de φ_{u_k} .

3. $\forall k, \nabla f(u_{k+1}) \perp \nabla f(u_k)$ et la suite (u_k) converge vers a pour tout choix de u_0 .

Exemple 24. Soit *A* symétrique définie positive et soit *f* la fonctionnelle **Proposition 31** (Jensen). quadratique $f(x) = \frac{1}{2} \langle Ax \mid x \rangle - \langle b \mid x \rangle$. Alors minimiser f revient à résoudre Ax = b. L'algorithme du gradient à pas optimal s'applique et le réel t_k est donnée explicitement par :

$$t_k = \frac{\|w_k\|}{\langle Aw_k \mid w_k \rangle}, \quad w_k = Au_k - b$$

4 Applications en probabilités

Définition 25. Soit X v.a. réelle. On définit la fonction de répartition de X par $F_X(t) = \mathbf{P}(X \leq t)$.

Proposition 26. *Soit X une v.a. réelle.*

- 1. F_X est croissante, continue à droite en tout point et admet une limite à gauche en tout point.
- 2. $\lim_{-\infty} F_X = 0 \ et \lim_{+\infty} F_X = 1$.
- 3. F_X est continue en un point x ssi P(X = x) = 0.
- 4. F_X caractérise la loi : si $F_X = F_Y$ alors X et Y ont la même loi.

Exemple 27. Soient X_1, \ldots, X_n des v.a. indépendantes avec X_i de loi $\mathcal{G}(p_i)$, $p_i \in]0,1[$. Alors min (X_1,\ldots,X_n) suit une loi géométrique de paramètre 1 – $\prod_{i=1}^{n} (1-p_i).$

Définition 28. On dit que (X_n) converge en loi vers X si pour toute fonction f continue bornée, $\mathbf{E}[f(X_n)] \to \mathbf{E}[f(X)]$

Théorème 29. (X_n) converge en loi ssi pour tout t point de continuité de F_X , $F_{X_n}(t) \rightarrow F_X(t)$.

Exemple 30. Soit (X_n) une suite de v.a. de loi $\mathcal{U}([0,\theta])$ avec $\theta > 0$. Posons $M_n = \max(X_1, \dots, X_n)$. Alors $n(\theta - M_n) \xrightarrow{\mathscr{L}} \mathscr{E}(\frac{1}{\theta})$.

Exemple 32. une application de Jensen.

Application 33 (processus de Galton–Watson). Soient $(X_{n,j})$ des v.a. dans N indépendantes et de même loi μ admettant une espérance m. On suppose que $\mu(0) \in]0,1[$. On note $Z_0 = 1$ et $Z_{n+1} = \sum_{i=1}^{Z_n} X_{n,i}$. On s'intéresse la probabilité de l'évènement « extinction » $E = \bigcup_{n=0}^{\infty} \{Z_n = 0\}$. Alors si $m \leq 1$, P(E) = 1 et si m > 1 alors P(E) < 1.

Développements

- 1. Méthode du gradient à pas optimal. [23]
- 2. Processus de Galton-Watson. [33]

Références

- BECK, MALICK et PEYRÉ, Objectif agrégation.
- COTTRELL, Exercices de probabilité.
- GARET et KURTZMAN, De l'intégration aux probabilités.
- GONNORD et TOSEL, Thèmes d'analyse pour l'agrégation.
- GOURDON, Les maths en tête, analyse.
- RAMIS, DESCHAMPS et ODOUX, Cours de mathématiques spéciales tome 3 : topologie et éléments d'analyse.
- ROUVIÈRE, Petit guide de calcul différentiel.