Leçon 120 : Anneaux $\mathbb{Z}/n\mathbb{Z}$ **. Applications.**

On rappelle que ${\bf Z}$ est un anneau euclidien. Ses seuls idéaux sont les $n{\bf Z}$ avec $n\in {\bf N}$. On dit que a est congru à b modulo n si n divise a-b. Cette relation est la relation d'équivalence associée à l'idéal $n{\bf Z}$. Elle est compatible avec l'addition et la multiplication dans ${\bf Z}$, ce qui munit l'ensemble quotient ${\bf Z}/n{\bf Z}$ d'une structure d'anneau.

1 Groupes cycliques

Définition 1. Un groupe G est dit cyclique s'il est fini et engendré par un seul élément.

Proposition 2. Si G est cyclique de cardinal n, alors il est isomorphe au groupe $\mathbb{Z}/n\mathbb{Z}$

Proposition 3. *Si G est de cardinal p premier, alors G est cyclique.*

Définition 4. On appelle fonction indicatrice d'Euler et on note $\varphi(n)$ le nombre d'entiers compris entre 1 et n qui sont premiers avec n.

Proposition 5. Le groupe $\mathbb{Z}/n\mathbb{Z}$ possède $\varphi(n)$ générateurs.

Proposition 6. Pour tout d divisant n, le groupe $\mathbb{Z}/n\mathbb{Z}$ possède un unique sous-groupe d'ordre d, engendré par la classe de $\frac{n}{d}$.

Remarque 7. Ce sont en fait des idéaux.

Proposition 8. *Pour tout* $n \in \mathbb{N}^*$, *on* $a n = \sum_{d|n} \varphi(d)$.

Théorème 9. Soit K un corps et G un sous-groupe fini du groupe multiplicatif K^* . Alors G est cyclique.

Exemple 10. Le groupe multiplicatif de \mathbf{F}_p est cyclique, donc isomorphe à $\mathbf{Z}/(p-1)\mathbf{Z}$.

Proposition 11. Soient $n, m \in \mathbb{N}^*$ et soit d leur PGCD. Alors il existe d morphismes entre les groupes $\mathbb{Z}/n\mathbb{Z}$ et $\mathbb{Z}/m\mathbb{Z}$. Ils sont de la forme $x[n] \mapsto ax[m]$ où a est un élément dont l'ordre dans $\mathbb{Z}/m\mathbb{Z}$ divise n et m.

Corollaire 12. Il y a $\varphi(n)$ automorphismes de $\mathbb{Z}/n\mathbb{Z}$. Ceux-ci sont de la forme $\overline{x} \mapsto \overline{kx}$ où k est premier avec n.

2 Structure des groupes abéliens finis

Lemme 13. Soit G un groupe abélien fini et soit H un sous-groupe de G. Alors tout morphisme de H dans \mathbb{C}^* se prolonge en un morphisme de G dans \mathbb{C}^* .

Lemme 14. Soit G un groupe abélien fini et soit x un élément d'ordre maximal. Alors l'ordre de tout élément de G divise l'ordre de x.

Théorème 15 (structure des groupes abéliens finis). Soit G un groupe abélien fini. Il existe des entiers $1 < d_k | \cdots | d_1$ tels que G soit isomorphe au produit $\mathbf{Z}/d_k\mathbf{Z} \times \cdots \times \mathbf{Z}/d_1\mathbf{Z}$. De plus, les entiers d_k, \ldots, d_1 sont uniques, on les appelles les invariants de G.

Exemple 16. À isomorphisme près, il n'y a que 6 groupes abéliens d'ordre $600 = 2^3 \times 5^2 \times 3$. Ses invariants possibles sont : (600), (5;120), (2;300), (10;60), (2;2;150) et (2;10;30).

3 Anneaux $\mathbb{Z}/n\mathbb{Z}$

Définition 17. On note $(\mathbf{Z}/n\mathbf{Z})^*$ le groupe des éléments de $\mathbf{Z}/n\mathbf{Z}$ inversibles pour la multiplication.

Proposition 18. Un entier est inversible modulo n si et seulement si il est premier avec n.

Corollaire 19. *Le cardinal de* $(\mathbf{Z}/n\mathbf{Z})^*$ *vaut* $\varphi(n)$.

Proposition 20. Les trois assertions suivantes sont équivalentes :

- 1. **Z**/n**Z** est un anneau intègre.
- 2. $\mathbf{Z}/n\mathbf{Z}$ est un corps.
- 3. n est premier.

Corollaire 21. Les idéaux maximaux de $\mathbb{Z}/n\mathbb{Z}$ sont les $\overline{p}(\mathbb{Z}/n\mathbb{Z})$ où p est un nombre premier divisant n.

Exemple 22.

- 1. **Petit théorème de Fermat :** Soient $a \in \mathbb{Z}$ et p un nombre premier, alors $a^p \equiv a \mod p$.
- 2. **Théorème d'Euler :** Plus généralement si $n \in \mathbb{N}^*$ et si a est premier avec n, on a $a^{\varphi(n)} \equiv 1 \mod n$.
- 3. **Théorème de Wilson :** Un nombre p est premier si et seulement si $(p-1)! \equiv -1 \mod p$.

Théorème 23 (lemme chinois). *Soient n et m premiers entre eux. Alors les anneaux* ($\mathbb{Z}/nm\mathbb{Z}$) *et* ($\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$) *sont isomorphes.*

Remarque 24.

- La réciproque est vraie.
- Par récurrence, le résultat se généralise pour des entiers $n_1, ..., n_k$ premiers entre eux deux à deux.

Exemple 25. On considère le système de congruences suivant :

$$\begin{cases} x \equiv 2 \mod 4 \\ x \equiv 3 \mod 5 \\ x \equiv 1 \mod 9 \end{cases}$$

Les solutions de ce systèmes sont les $x_k = 118 + 180k$, $k \in \mathbb{Z}$.

Corollaire 26. Soient n et m deux entiers. Soit d leur PGCD et soit μ leur PPCM. Alors les anneaux ($\mathbf{Z}/n\mathbf{Z} \times \mathbf{Z}/m\mathbf{Z}$) et ($\mathbf{Z}/d\mathbf{Z} \times \mathbf{Z}/\mu\mathbf{Z}$) sont isomorphes.

Corollaire 27. Soit n un entier, que l'on décompose en produit de facteurs premiers $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$. Alors :

$$\varphi(n) = \prod_{i=1}^{k} \varphi(p_i^{\alpha_i}) = n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i}\right)$$

4 Structure de $(\mathbb{Z}/n\mathbb{Z})^*$

Lemme 28. Soit p un nombre premier impair et soit $k \in \mathbb{N}^*$. Alors on a $(1+p)^{p^k} = 1 + \lambda p^{k+1}$ avec $\lambda \in \mathbb{N}^*$ non divisible par p.

Théorème 29 (structure de $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^*$). Soit p un nombre premier impair et soit α un entier ≥ 2 . Alors les groupes $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^*$ et $\mathbf{Z}/\varphi(p^{\alpha})\mathbf{Z}$ sont isomorphes.

Lemme 30. *Soit* $k \in \mathbb{N}^*$, *on* $a(5)^{2^k} = 1 + \lambda 2^{k+2}$ *avec* λ *impair.*

Théorème 31 (structure de $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^*$). On a $(\mathbf{Z}/2\mathbf{Z})^* = \{1\}$, $(\mathbf{Z}/4\mathbf{Z})^* = \{\pm 1\} \cong \mathbf{Z}/2\mathbf{Z}$. Pour $\alpha \ge 3$ on a $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^* \cong \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2^{\alpha-2}\mathbf{Z}$.

Exemple 32. Soit *G* un groupe d'ordre pq avec p et q deux nombres premiers tels que p < q et $p \nmid (q-1)$. Alors *G* est cyclique.

5 Arithmétique et théorème des deux carrés

Exemple 33. On considère l'équation diophantienne $3x^2 - 35y^2 = a$ avec a un entier compris entre 1 et 20. Cette équation n'a des solutions que pour $a \in \{3;7;12;13\}$.

et d deux entiers tels que ed $\equiv 1 \mod \varphi(n)$. Alors pour tout $M \in \mathbb{Z}$, on a si pour tout p_i congru à 3 modulo 4, on a α_i pair. $M^{de} \equiv M \mod n$.

Exemple 35. Principe du chiffrement RSA.

- On choisit p et q deux nombres premiers distincts et on calcule leur produit *n*.
- On choisit *e* premier avec $\varphi(n) = (p-1)(q-1)$.
- On calcule d, inverse de e modulo $\varphi(n)$.

Les nombres (n, e) sont la *clef publique* et le nombre d est la *clef privée*. Le message à envoyer est représenté par un élément M de $\mathbb{Z}/n\mathbb{Z}$. Le message chiffré est alors $C = M^e$. Pour déchiffrer le message, on utilise la proposition précédente : $C^d \equiv M \mod n$.

Théorème 36. Soit p premier impair. Un élément $x \neq 0$ est un carré dans \mathbf{F}_{p}^{*} si et seulement si $x^{\frac{p-1}{2}} = 1$.

Définition 37. On appelle entiers de Gauss l'ensemble des nombres complexes de la forme a+ib, avec a et b des entiers relatifs. Cet ensemble est noté **Z**[i].

Proposition 38. L'ensemble **Z**[i] est un anneau euclidien pour la norme $N(z) = |z|^2$. Un élément est inversible si et seulement si il est de norme 1. Les unités de $\mathbf{Z}[i]$ sont donc 1, -1, i et -i.

Proposition 39. *La norme N est multiplicative. Par conséquent, l'ensemble* des éléments de **Z** qui sont somme de deux carrés est stable par produit.

Théorème 40 (théorème des deux carrés de Fermat, cas premier). *Soit p* un nombre premier impair. Alors p est la somme de deux carrés si et seule $ment \, si \, p \equiv 1 \mod 4$.

Théorème 41 (théorème des deux carrés de Fermat, cas général). *Soit n* un entier supérieur ou égal à 2, que l'on décompose en produit de facteurs

Proposition 34. Soient p et q premiers distincts et soit n=pq. Soient e premiers $n=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$. Alors n est la somme de deux carrés si et seulement

Exemple 42. Soit *p* un nombre premier. Alors l'équation diophantienne $x^2 + y^2 = pz^2$ n'a pas de solutions si $p \equiv 3 \mod 4$.

Développements

- 1. Structure des groupes abéliens finis. [15]
- 2. Structure de $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^*$, p premier impair. [29]

Références

- Combes, Algèbre et géométrie.
- GOURDON, Les maths en tête, algèbre.
- PERRIN, Cours d'algèbre.
- PERRIN, Mathématiques d'école.
- PEYRÉ, L'algèbre discrète de la transformée de Fourier.