Un isomorphisme entre groupes de Lie

Définition. Dans toute la suite, le corps considéré est celui des réels \mathbb{R} . On note $PSL(2) = SL(2,\mathbb{R})/\{\pm I_2\}$, O(1,2) le groupe d'isométrie de la forme quadratique réelle de signature (1,2), et $SO_0(1,2)$ sa composante connexe à l'identité, le groupe orthochrone.

Théorème. PSL(2) et $SO_0(1,2)$ sont difféomorphes.

Lemme. SL(2) est une sous-variété de M(2) de dimension 3, et son espace tangent en l'identité est $V = Tr^{-1}(0)$.

 $SO_0(1,2)$ est une sous-variété de M(3) de dimension 3.

 $D\acute{e}monstration$. Oui

Démonstration. La preuve se décompose en trois étapes :

- 1/ On fait agir SL(2) sur V, ce qui induit un morphisme $\phi: SL(2) \to GL(3)$.
- 2/ On montre que ce morphisme est à valeur dans $SO_0(1,2)$
- 3/On montre que ce morphisme est un difféomorphisme local et on conclut par connexité.
- 1/ On fait agir SL(2) sur V par la conjugaison $s.v \mapsto svs^{-1}$. C'est bien une action de groupe linéaire; cela induit un morphisme $\phi: SL(2) \to GL(V)$. On identifie V à \mathbb{R}^3 grâce au choix de base $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Si $\phi(s) = I_3$, alors s commute avec tous les éléments de V, donc avec les éléments de

Si $\phi(s) = I_3$, alors s commute avec tous les éléments de V, donc avec les éléments de la base ci-dessus : on trouve alors que $s \in \mathbb{R}I_2 \cap SL(2) = \{\pm I_2\}$, et réciproquement, $\phi(\pm I_2) = I_3$.

2/ Considérons la forme quadratique $q = \det_{V}$. On a

$$q\left(\begin{bmatrix} a & b \\ c & -a \end{bmatrix}\right) = -a^2 - bc = -a^2 - (\frac{b+c}{2})^2 + (\frac{b-c}{2})^2$$

Donc dans la base de V choisie ci-dessus, on a $q(x_1, x_2, x_3) = x_1^2 - x_2^2 - x_3^2$. De plus, l'action par conjugaison préserve le déterminant, donc q, donc $\operatorname{Im}(\phi) \subset O(1, 2)$. De plus, ϕ est continue et SL(2) est connexe, donc $\operatorname{Im}(\phi) \subset SO_0(1, 2)$.

 $3/\phi$ est une application continue entre deux sous-variétés. On va montrer qu'elle est **ouverte**, en commençant par montrer qu'elle envoie un voisinage de I_2 dans SL(2) sur un voisinage de I_3 dans $SO_0(1,2)$.

 ϕ est en fait la restriction de

$$\tilde{\phi} \begin{cases} GL(2) \to GL(3) \\ s \mapsto (v \mapsto svs^{-1}) \end{cases}$$

à SL(2). $\tilde{\phi}$ est clairement \mathcal{C}^{∞} sur un ouvert d'un espace vectoriel, et ϕ est donc une application \mathcal{C}^{∞} entre sous-variétés, telle que $D\phi(I_2) = D\tilde{\phi}(I_2)_{|V}$. Comme c'est une application entre variétés de même dimension, il suffit de montrer que $D\phi(I_2)$ est injective pour utiliser le théorème d'inversion locale. On a

$$\operatorname{Ker} D\phi(I_2) = V \cap \operatorname{Ker} D\tilde{\phi}(I_2)$$

On peut calculer explicitement $D\tilde{\phi}(I_2)$:

$$\tilde{\phi}(I_2 + h) = (v \mapsto (I_2 + h)v(I_2 + h)^{-1})$$

$$= (v \mapsto (I_2 + h)v(I_2 - h + o(h)))$$

$$= (v \mapsto v + hv - vh + v \times o(h))$$

$$= I_3 + [h, \cdot] + o(h)$$

Ainsi, Ker $D\tilde{\phi}(I_2) = \{h \in M(2) | \forall v \in V, hv = vh\} = \mathbb{R}I_2$ (il suffit de tester h contre $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ et $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$). Donc Ker $D\phi(I_2) = V \cap \mathbb{R}I_2 = \{0\}$, ce qui conclut : par théorème d'inversion local, ϕ est un difféomorphisme au voisinage de I_2 .

Soit maintenant $s \in SL(2)$, on a $\tilde{\phi}(s+h) = \phi(s)\tilde{\phi}(I_2 + s^{-1}h)$, et donc ϕ est un difféomorphisme local en tout point, donc ϕ est ouverte.

 $\operatorname{Im}(\phi)$ est un ouvert de $SO_0(1,2)$, mais on peut aussi écrire

$$\operatorname{Im}(\phi) = SO_0(1,2) \setminus \bigcup_{g \in SO_0(1,2) \setminus \operatorname{Im}(\phi)} g\operatorname{Im}(\phi)$$

 $\operatorname{Im}(\phi)$ est ouvert, fermé, non vide, donc par connexité de $SO_0(1,2)$, ϕ est surjective.