$\mathbb{C}[X,Y]/(X^2+Y^2-1)$ principal 14

ref: Ortiz, FG alg 1.

Théorème 14.1 L'anneau quotient $\mathbb{C}[X,Y]/(X^2+Y^2-1)$ est principal.

PREUVE.

Démarche:

On va se ramener par deux isomorphismes successifs à un anneau plus simple : $\mathbb{C}[U,\frac{1}{U}]$ pour lequel on a le lemme suivant :

LEMME 14.2 Soient A et B sont des anneaux intègres tels que $A \subset B \subset Frac(A)$. Si A est principal, alors B l'est aussi.

PREUVE. Soit J un idéal de B. L'intersection de J avec A est un idéal de A qui est engendré par un élément a puisque A est principal. Montrons que a engendre en fait J tout entier.

Soit $b \in J$. On écrit $b = \frac{p}{q}$ avec p et q dans A, premiers entre eux. On a $p = bq \in J \cap A$, donc p=ac avec $c\in A$. Il reste à montrer que $\frac{1}{q}$ appartient à B. Comme p et q sont premiers entre eux dans A qui est principal, on a une relation de Bézout qui les lie : up+vq=1 avec $u,v\in A$. D'où pbq+vq=1, puis q(pb+v)=1, donc $\frac{1}{q}\in B$.

L'anneau $\mathbb{C}[U]$ est principal et son corps des fractions $\mathbb{C}(U)$ contient bien $\mathbb{C}[U,\frac{1}{U}]$, donc le lemme s'applique et ce dernier anneau est bien principal.

Montrons un premier isomorphisme:

$$\mathbb{C}[X,Y]/(X^2 + Y^2 - 1) \simeq \mathbb{C}[U,V]/(UV - 1)$$

Il faut penser à U et V comme z et \overline{z} pour z = X + iY pour poser :

Par propriété universelle de l'anneau $\mathbb{C}[U,V]$, il existe un (unique) morphisme

$$\Psi: \mathbb{C}[U,V] \to \mathbb{C}[X,Y]/(X^2+Y^2-1)$$

vérifiant $\Psi(U) = X + iY$ et $\Psi(V) = X - iY$. Il passe au quotient en un morphisme

$$\tilde{\Psi}: \mathbb{C}[U,V]/(UV-1) \to \mathbb{C}[X,Y]/(X^2+Y^2-1)$$

$$\operatorname{car} \Psi(U)\Psi(V) - 1 = (X + iY)(X - iY) - 1 = X^2 + Y^2 - 1 = 0.$$

De même, par propriété universelle de $\mathbb{C}[X,Y]$, il existe un (unique) morphisme

$$\Phi: \mathbb{C}[X,Y] \to \mathbb{C}[U,V]/(UV-1)$$

vérifiant $\Phi(X) = \frac{U+V}{2}$ et $\Phi(Y) = \frac{U-V}{2i}$. Il passe au quotient en un morphisme

$$\tilde{\Phi}: \mathbb{C}[X,Y]/(X^2+Y^2-1) \to \mathbb{C}[U,V]/(UV-1)$$

car
$$\Phi(X)^2 + \Phi(Y)^2 - 1 = (\frac{U+V}{2})^2 + (\frac{U-V}{2i})^2 - 1 = UV - 1 = 0$$

car $\Phi(X)^2 + \Phi(Y)^2 - 1 = (\frac{U+V}{2})^2 + (\frac{U-V}{2i})^2 - 1 = UV - 1 = 0$. On vérifie que $\tilde{\Psi} \circ \tilde{\Phi} = \mathrm{id}$ et $\tilde{\Phi} \circ \tilde{\Psi} = \mathrm{id}$. Il suffit de le faire sur les générateurs et alors c'est immédiat, on l'a construit pour.

Montrons un deuxième isomorphisme :

$$\mathbb{C}[U,V]/(UV-1) \simeq \mathbb{C}[U,\frac{1}{U}]$$

Par propriété universelle de l'anneau $\mathbb{C}[U,V]$, on a un morphisme

$$\Theta: \mathbb{C}[U,V] \to \mathbb{C}[U,\frac{1}{U}]$$

tel que $\Theta(U)=U$ et $\Theta(V)=\frac{1}{U}$. Ce morphisme est surjectif car l'image contient les deux générateurs U et $\frac{1}{U}$.

Cherchons le noyau de Θ . L'idéal (UV-1) est dans le noyau car $U\frac{1}{U}-1=0$. Réciproquement si $P \in \ker \Theta$, Considérons P dans $\mathbb{C}(U)[V]$ et faisons une division euclidienne ce qui est justifié car $\mathbb{C}(U)$ est un corps donc $\mathbb{C}(U)[V]$ est euclidien.

$$P = (UV - 1)Q + R$$

avec $R \in \mathbb{C}(U)$ et $Q \in C(U)[V]$. En multipliant par le ppcm A des dénominateurs des fractions rationnelles en U, on trouve :

$$AP = (UV - 1)AQ + AR$$

avec $AQ \in \mathbb{C}[U][V]$ et $AR \in \mathbb{C}[U]$. En appliquant Θ , on trouve A(T)R(T) = 0, puis R = 0 car $A \neq 0$ dans $\mathbb{C}[T]$. Comme UV - 1 est irréductible dans $\mathbb{C}[U, V]$ car primitif et de degré 1 dans l'anneau isomorphe $\mathbb{C}[U][V]$, par le lemme de Gauss UV - 1 divisant AP doit diviser P (car A est de degré 0 en V). Ainsi $P \in (UV - 1)$.

Leçons concernées : algèbre de polynômes en plusieurs indéterminées, anneaux principaux.