Résolution de -u'' + u = f dans $H^1(\mathbb{T})$

Michel Davydov

 ${\bf R\'ef\'erence}$: Polycopié $Distributions\ temp\'er\'ees$ d'Arthur Leclaire, disponible sur son site

Leçons concernées :

- 201 Espaces de fonctions. Exemples et applications.
- 220 Equations différentielles X' = f(t, X). Exemples d'étude des solutions en dimension 1 et 2.
- 221 Equations différentielles linéaires. Systèmes d'equations différentielles linéaires. Exemples et applications.
- 222 Exemples d'équations aux dérivées partielles linéaires.
- 228 Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.
- 234 Espaces $L^p, 1 \le p \le +\infty$. Exemples et applications.
- 246 Séries de Fourier. Exemples et applications.

On note $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$.

Soit $f \in L^2(0, 2\pi)$. On considère l'équation différentielle avec conditions de bord périodiques :

$$\begin{cases}
-u'' + u = f \\
u(0) = u(2\pi)
\end{cases}$$
(1)

On cherche des solutions faibles, i.e. on cherche $u \in H^1(\mathbb{T})$ telle que $\forall \phi \in H^1(\mathbb{T}), \int_0^{2\pi} (u'\phi' + u\phi) = \int_0^{2\pi} f\phi$.

Théorème 1

Soit
$$T \colon L^2(\mathbb{T}) \to L^2(\mathbb{T})$$

 $f \mapsto T_f$

où T_f est la solution faible associée à f. Alors T=e*f, où $e(x)=\frac{1}{2}e^{-|x|}+\frac{1}{e^{4\pi}-1}\cosh(x)$.

Lemme 1 Notons $(c_n(g))$ les coefficients de Fourier d'une fonction g. Soit $u \in H^1(\mathbb{T})$. u est solution faible de (1) ssi $\forall n \in \mathbb{Z}, c_n(u) = \frac{c_n(f)}{1+n^2}$.

Preuve : On recherche $u \in H^1(\mathbb{T})$ telle que $\forall \phi \in H^1(\mathbb{T}), \int_0^{2\pi} (u'\phi' + u\phi) = \int_0^{2\pi} f\phi$, i.e. $\forall \phi \in H^1(\mathbb{T}), \int_0^{2\pi} (u'\overline{\phi'} + u\overline{\phi}) = \int_0^{2\pi} f\overline{\phi}$. Comme $u \in H^1(\mathbb{T}), u$ est somme de sa série de Fourier et la convergence est normale. De plus, $c_n(u') = inc_n(u)$.

Donc

$$\forall \phi \in H^1(\mathbb{T}), \sum_{n \in \mathbb{Z}} c_n(u') \overline{c_n(\phi')} + \sum_{n \in \mathbb{Z}} c_n(u) \overline{c_n(\phi)} = \sum_{n \in \mathbb{Z}} c_n(f) \overline{c_n(\phi)},$$

d'où

$$\sum_{n\in\mathbb{Z}} ((1+n^2)c_n(u) - c_n(f))\overline{c_n(\phi)} = 0.$$

Ceci étant vrai pour tout fonction ϕ , en prenant $\phi(t) = e^{int}$, on obtient que $\forall n \in \mathbb{Z}, (1+n^2)c_n(u) = c_n(f)$. Ainsi, l'unique solution est donnée par

$$u(x) = \sum_{n \in \mathbb{Z}} \frac{c_n(f)}{1 + n^2} e^{inx}.$$
 (2)

Cette fonction est bien définie car $\frac{|c_n(f)|}{1+n^2} \leq \frac{||f||_2}{1+n^2}$, donc $\sum \frac{|c_n(f)|}{1+n^2} < \infty$. Ainsi, (2) définit bien une fonction continue. Il reste à voir que u ainsi définie est bien dans $H^1(\mathbb{T})$. Comme par l'inégalité de Cauchy-Schwarz,

$$\sum_{n \in \mathbb{Z}} \frac{|inc_n(f)|}{1+n^2} \le \left(\sum_{n \in \mathbb{Z}} \left(\frac{n}{1+n^2}\right)^2\right)^{\frac{1}{2}} \left(\sum_{n \in \mathbb{Z}} \left(c_n(f)^2\right)^{\frac{1}{2}} \le C||f||_2,$$

où C est une constante strictement positive. Ainsi, (2) définit une fonction C^1 . Ceci conclut car $C^1(\mathbb{T}) \subset H^1(\mathbb{T})$.

Preuve théorème : A présent, définissons e par

$$e(x) = \sum_{n \in \mathbb{Z}} \frac{e^{inx}}{1 + n^2}.$$

Alors, $c_n(T_f) = c_n(e)c_n(f) = c_n(e*f)$. Par injectivité des séries de Fourier, $T_f = e*f$, dès lors que le produit de convolution a bien un sens. De plus, si e est une distribution, e est solution élémentaire de $-\delta_0'' + \delta_0$, i.e. e est solution de $-e'' + e = \delta_0$. En se restreignant à \mathbb{R}^{+*} et \mathbb{R}^{-*} , e est solution de e'' = e. Donc, il existe des constantes $\alpha, \beta, \lambda, \mu$ telles que $e(x) = \alpha e^x + \beta e^{-x}$ sur \mathbb{R}^{+*} et $e(x) = \lambda e^x + \mu e^{-x}$ sur \mathbb{R}^{+-*} . Il s'agit alors de voir quand la fonction recollée sur \mathbb{R} vérifie $-e'' + e = \delta_0$. Par la formule des sauts, on a $e''(x) = e(x) + (\alpha + \beta + \lambda + \mu)\delta_0' + (\alpha - \beta + \lambda - \mu)\delta_0$, d'où $\alpha - \lambda = \frac{1}{2}$ et $\beta - \mu = -\frac{1}{2}$.

Ainsi, il existe des constantes a,b telles que $e(x) = \frac{1}{2}e^{-|x|^2} + ae^x + be^{-x}$. Quitte à changer les constantes, on peut écrire

$$e(x) = \frac{1}{2}e^{-|x|} + a\cosh(x) + b\sinh(x).$$

Par parité de la solution sur $[-\pi, \pi]$, on a nécéssairement b = 0. De plus, comme la solution définie par (2) doit être de classe C^1 , on a nécéssairement $e'(2\pi) = 0$. Un calcul conduit à $a = \frac{1}{e^{4\pi}-1}$.

Remarque : On peut montrer que l'opérateur de $L^2(\mathbb{T})$ dans $L^2(\mathbb{T})$ qui à f associe la solution de (1) est un opérateur compact.